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» Meteorology / Oceanography: Transport processes of
momentum, heat, water vapor as well as other scalars
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The Role of Turbulence (1)

» Most flows in nature & technical applications are
turbulent
» Significance of Turbulence
» Meteorology / Oceanography: Transport processes of
momentum, heat, water vapor as well as other scalars
» Health care: Air pollution
» Aviation, Engineering: Wind impact on buildings, power output
of windfarms
» Characteristics of turbulence
» non-periodical, 3D stochastic movements
> mixes air and its properties on scales between large-scale
advection and molecular diffusion
> non-linear — energy is distributed smoothly with wavelength
» wide range of spatial and temporal scales
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Small eddies: 10~3m (1), 0.1s
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The Role of Turbulence (I1)

> Large eddies: 103m (L), 1h
Small eddies: 10~3m (1), 0.1s
> Energy production and dissipation
on different scales
> Large scales: shear and
buoyant production
> Small scales: viscous

dissipation
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The Role of Turbulence

The Role of Turbulence (I1)

> Large eddies: 103m (L), 1h
Small eddies: 10~3m (1), 0.1s
> Energy production and dissipation
on different scales
> Large scales: shear and
buoyant production
> Small scales: viscous
dissipation
> Large eddies contain most energy

> Energy-cascade
Large eddies are broken up by
instabilities and their energy is
handled down to smaller scales.
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The Reynolds Number (Re)

% ~ Re3/* ~ 10°
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u 3D wind vector

v kinematic molecular viscosity
L outer scale of turbulence

U characteristic velocity scale
7 inner scale of turbulence
(Kolmogorov dissipation length)
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The Reynolds Number (Re)

u 3D wind vector
L~ Re3/% ~ 106 (in the atmosphere) v kinematic molecular viscosity
K L outer scale of turbulence
A LU inertia forces U_characteristic velocity scale
=7 Viscous forces 7 inner scale of turbulence
(Kolmogorov dissipation length)
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The Reynolds Number

The Reynolds Number (Re)

u 3D wind vector
L~ Re3/% ~ 106 (in the atmosphere) v kinematic molecular viscosity
K L outer scale of turbulence
— U characteristic velocity scale
U inertia forces .
VT v Viscous forces 7 inner scale of turbulence
(Kolmogorov dissipation length)

B
<
=
>
-

= Number of gridpoints for a 3D simulation:

3
(%) ~ Re%/* ~ 10'® (in the atmosphere)
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Classes of Turbulence Models (1)

» Direct numerical Simulation (DNS)
» Most straight-forward approach:
> Resolve all scales of turbulent flow explicitly.

» Advantage:
> (In principle) a very accurate turbulence representation.

» Problem:
» Limited computer resources (1996: ~ 10%, today: ~ 102
gridpoints, but ~ 10'® gridpoints needed, see prior slide).
» 1h simulation of 10° (2048%) gridpoints on 512 processors of
the HLRN supercomputer needs 10h CPU time.
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Classes of Turbulence Models (1)

» Direct numerical Simulation (DNS)
» Most straight-forward approach:
> Resolve all scales of turbulent flow explicitly.
» Advantage:
> (In principle) a very accurate turbulence representation.
> Problem:

» Limited computer resources (1996: ~ 10%, today: ~ 102
gridpoints, but ~ 10'® gridpoints needed, see prior slide).
» 1h simulation of 10° (2048%) gridpoints on 512 processors of
the HLRN supercomputer needs 10h CPU time.
» Consequences:

> DNS is restricted to moderately turbulent flows (low
Reynolds-number flows).

» Highly turbulent atmospheric turbulent flows cannot be
simulated.
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Classes of Turbulence Models (I1)

» Reynolds averaged (Navier-Stokes) simulation (RANS)
» Opposite strategy:
> Applications that only require average statistics of the flow
(i.e. the mean flow).
> Integrate merely the ensemble-averaged equations.
» Parameterize turbulence over the whole eddy spectrum.
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» Reynolds averaged (Navier-Stokes) simulation (RANS)
» Opposite strategy:
> Applications that only require average statistics of the flow
(i.e. the mean flow).
> Integrate merely the ensemble-averaged equations.
» Parameterize turbulence over the whole eddy spectrum.
» Advantage:
» Computationally inexpensive, fast.
> Problem:
> Turbulent fluctuations not explicitly captured.
> Parameterizations are very sensitive to large-eddy structure
that depends on environmental conditions such as geometry
and stratification — Parameterizations are not valid for a wide
range of different flows.
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Classes of Turbulence Models (I1)

» Reynolds averaged (Navier-Stokes) simulation (RANS)
» Opposite strategy:
> Applications that only require average statistics of the flow
(i.e. the mean flow).
> Integrate merely the ensemble-averaged equations.
» Parameterize turbulence over the whole eddy spectrum.
» Advantage:
» Computationally inexpensive, fast.
» Problem:
> Turbulent fluctuations not explicitly captured.
> Parameterizations are very sensitive to large-eddy structure
that depends on environmental conditions such as geometry
and stratification — Parameterizations are not valid for a wide
range of different flows.
» Consequence:
> Not suitable for detailed turbulence studies.
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» Large eddy simulation (LES)
» Seeks to combine advantages and avoid disadvantages of DNS
and RANS by treating large scales and small scales separately,
based on Kolmogorov's (1941) similarity theory of turbulence.
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» Large eddy simulation (LES)
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and RANS by treating large scales and small scales separately,
based on Kolmogorov's (1941) similarity theory of turbulence.
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Classes of Turbulence Models (111)

» Large eddy simulation (LES)

» Seeks to combine advantages and avoid disadvantages of DNS
and RANS by treating large scales and small scales separately,
based on Kolmogorov's (1941) similarity theory of turbulence.

> Large eddies are explicitly resolved.

» The impact of small eddies on the large-scale flow is
parameterized.
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Classes of Turbulence Models (111)

» Large eddy simulation (LES)

>

Seeks to combine advantages and avoid disadvantages of DNS
and RANS by treating large scales and small scales separately,
based on Kolmogorov's (1941) similarity theory of turbulence.

> Large eddies are explicitly resolved.
» The impact of small eddies on the large-scale flow is

parameterized.
Advantages:

» Highly turbulent flows can be simulated.

» Local homogeneity and isotropy at large Re (Kolmogorov's 15
hypothesis) leaves parameterizations uniformly valid for a wide
range of different flows.
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Concept of Large Eddy Simulation (I)
> Filtering
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Stull (1988)
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> Spectral cut at wavelength
Ax.

3

Stull (1988)

®/AX

i1 || Leibniz
1 0j Z ] Universitat
tog:4 | Hannover

PALM group PALM Seminar



Concept of LES
[ Je]

Concept of LES

Concept of Large Eddy Simulation (I)

> Filtering
> Spectral cut at wavelength
Ax.
» Structures larger than Ax are
explicitly calculated (resolved
scales). s

/—\ s

3

Stull (1988)

®/AX

Leibniz
1 0j Z ] Universitat
tog:4 | Hannover

PALM group PALM Seminar



Concept of LES
[ Je]

Concept of LES

Concept of Large Eddy Simulation (I)

> Filtering

> Spectral cut at wavelength
Ax.

» Structures larger than Ax are
explicitly calculated (resolved
scales). s

» Structures smaller than Ax s Sems e
must be filtered out (subgrid
scales), formally known as

low-pass filtering. ne x
Stull (1988)
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Concept of Large Eddy Simulation (I)

> Filtering

> Spectral cut at wavelength
Ax.

» Structures larger than Ax are
explicitly calculated (resolved
scales). s

» Structures smaller than Ax s Sems e
must be filtered out (subgrid
scales), formally known as
low-pass filtering. ne

> Like for Reynolds averaging:
split variables in mean part
and fluctuation, spatially
average the model equations,

e.g.
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Stull (1988)
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Concept of Large Eddy Simulation (I)

> Filtering

> Spectral cut at wavelength
Ax.

» Structures larger than Ax are
explicitly calculated (resolved
scales). s

» Structures smaller than Ax s Sems e
must be filtered out (subgrid
scales), formally known as
low-pass filtering. ne

> Like for Reynolds averaging:
split variables in mean part
and fluctuation, spatially
average the model equations,
e.g.:
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Concept of Large Eddy Simulation (I1)

» Parameterization
» The filter procedure removes the small scales from the model
equations, but it produces new unknowns, mainly averages of
fluctuation products.
> eg. w'o’
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» Parameterization

» The filter procedure removes the small scales from the model
equations, but it produces new unknowns, mainly averages of
fluctuation products.

> eg. w'o’

» These unknowns describe the effect of the unresolved, small
scales on the resolved, large scales; therefore it is important to
include them in the model.
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» Parameterization

» The filter procedure removes the small scales from the model
equations, but it produces new unknowns, mainly averages of
fluctuation products.

> eg. w'o’

» These unknowns describe the effect of the unresolved, small
scales on the resolved, large scales; therefore it is important to
include them in the model.

» We do not have information about the variables (e.g., vertical
wind component and potential temperature) on these small
scales of their fluctuations.
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Concept of Large Eddy Simulation (I1)

» Parameterization

» The filter procedure removes the small scales from the model
equations, but it produces new unknowns, mainly averages of
fluctuation products.

> eg. w'o’

» These unknowns describe the effect of the unresolved, small
scales on the resolved, large scales; therefore it is important to
include them in the model.

» We do not have information about the variables (e.g., vertical
wind component and potential temperature) on these small
scales of their fluctuations.

» Therefore, these unknowns have to be parameterized using
information from the resolved scales.

> A typical example is the flux-gradient relationship, e.g.,

0 — . 90
w0 = -y, - 5
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