

Fundamentals of Large-Eddy Simulation

PALM group

Institute of Meteorology and Climatology, Leibniz Universität Hannover

last update: 21st September 2015

 \triangleright Most flows in nature & technical applications are turbulent

- \triangleright Most flows in nature & technical applications are turbulent
- \blacktriangleright Significance of Turbulence
	- \triangleright Meteorology / Oceanography: Transport processes of momentum, heat, water vapor as well as other scalars
	- \blacktriangleright Health care: Air pollution
	- \blacktriangleright Aviation, Engineering: Wind impact on buildings, power output of windfarms

- \triangleright Most flows in nature & technical applications are turbulent
- \blacktriangleright Significance of Turbulence
	- \triangleright Meteorology / Oceanography: Transport processes of momentum, heat, water vapor as well as other scalars
	- \blacktriangleright Health care: Air pollution
	- ▶ Aviation, Engineering: Wind impact on buildings, power output of windfarms

\blacktriangleright Characteristics of turbulence

- \triangleright non-periodical, 3D stochastic movements
- \triangleright mixes air and its properties on scales between large-scale advection and molecular diffusion
- non-linear \rightarrow energy is distributed smoothly with wavelength
- \triangleright wide range of spatial and temporal scales

Large eddies: 10^3 m (*L*), 1 h Small eddies: $10^{-3}\,\text{m}$ (η) , $0.1\,\text{s}$

- large eddies: 10^3 m (L), 1 h Small eddies: 10^{-3} m (η), 0.1 s
- \blacktriangleright Energy production and dissipation on different scales
	- \blacktriangleright Large scales: shear and buoyant production
	- \blacktriangleright Small scales: viscous dissipation

Leibniz Universität

Hannover

 1004

- **Large eddies:** 10^3 m (L), 1 h Small eddies: 10^{-3} m (η), 0.1 s
- \blacktriangleright Energy production and dissipation on different scales
	- \blacktriangleright Large scales: shear and buoyant production
	- \blacktriangleright Small scales: viscous dissipation
- Large eddies contain most energy

Leibniz Universität

Hannover

 1004

- **Large eddies:** 10^3 m (L), 1 h Small eddies: 10^{-3} m (η), 0.1 s
- Energy production and dissipation on different scales
	- \blacktriangleright Large scales: shear and buoyant production
	- \blacktriangleright Small scales: viscous dissipation
- Large eddies contain most energy

Energy-cascade

Large eddies are broken up by instabilities and their energy is handled down to smaller scales.

The Reynolds Number (Re)

$$
\frac{L}{\eta} \approx Re^{3/4} \approx 10^6 \qquad \text{(in the atmosphere)}
$$

u 3D wind vector ν kinematic molecular viscosity L outer scale of turbulence U characteristic velocity scale η inner scale of turbulence (Kolmogorov dissipation length)

The Reynolds Number (Re)

3D wind vector ematic molecular viscosity er scale of turbulence racteristic velocity scale er scale of turbulence (Kolmogorov dissipation length)

The Reynolds Number (Re)

$$
\frac{L}{\eta} \approx Re^{3/4} \approx 10^6
$$
 (in the atmosphere) *v* kinematic molecular viscosity
L outer scale of turbulence

$$
Re = \frac{|\mathbf{u} \cdot \nabla \mathbf{u}|}{|\mathbf{v} \nabla^2 \mathbf{u}|} = \frac{LU}{\nu}
$$

u 3D wind vector

$$
\Rightarrow
$$
 Number of gridpoints for a 3D simulation:

$$
\left(\frac{L}{\eta}\right)^3 \approx Re^{9/4} \approx 10^{18}
$$
 (in the atmosphere)

\triangleright Direct numerical Simulation (DNS)

Direct numerical Simulation (DNS)

- \blacktriangleright Most straight-forward approach:
	- \blacktriangleright Resolve all scales of turbulent flow explicitly.

\triangleright Direct numerical Simulation (DNS)

- \blacktriangleright Most straight-forward approach:
	- \triangleright Resolve all scales of turbulent flow explicitly.
- \blacktriangleright Advantage:
	- \blacktriangleright (In principle) a very accurate turbulence representation.

Direct numerical Simulation (DNS)

- \blacktriangleright Most straight-forward approach:
	- \blacktriangleright Resolve all scales of turbulent flow explicitly.

\blacktriangleright Advantage:

- \blacktriangleright (In principle) a very accurate turbulence representation.
- \blacktriangleright Problem:
	- ▶ Limited computer resources (1996: $\sim 10^8$, today: $\sim 10^{12}$ gridpoints, but $\sim 10^{18}$ gridpoints needed, see prior slide).
	- 1 h simulation of 10^9 (2048³) gridpoints on 512 processors of the HLRN supercomputer needs 10 h CPU time.

\triangleright Direct numerical Simulation (DNS)

- \blacktriangleright Most straight-forward approach:
	- \blacktriangleright Resolve all scales of turbulent flow explicitly.
- \blacktriangleright Advantage:
	- \blacktriangleright (In principle) a very accurate turbulence representation.
- \blacktriangleright Problem:
	- ▶ Limited computer resources (1996: $\sim 10^8$, today: $\sim 10^{12}$ gridpoints, but $\sim 10^{18}$ gridpoints needed, see prior slide).
	- 1 h simulation of 10^9 (2048³) gridpoints on 512 processors of the HLRN supercomputer needs 10 h CPU time.
- \blacktriangleright Consequences:
	- \triangleright DNS is restricted to moderately turbulent flows (low Reynolds-number flows).
	- \blacktriangleright Highly turbulent atmospheric turbulent flows cannot be simulated.

▶ Reynolds averaged (Navier-Stokes) simulation (RANS)

- ▶ Reynolds averaged (Navier-Stokes) simulation (RANS)
	- \triangleright Opposite strategy:
		- \blacktriangleright Applications that only require average statistics of the flow (i.e. the mean flow).
		- Integrate merely the ensemble-averaged equations.
		- \blacktriangleright Parameterize turbulence over the whole eddy spectrum.

- \triangleright Reynolds averaged (Navier-Stokes) simulation (RANS)
	- \triangleright Opposite strategy:
		- \triangleright Applications that only require average statistics of the flow (i.e. the mean flow).
		- Integrate merely the ensemble-averaged equations.
		- \blacktriangleright Parameterize turbulence over the whole eddy spectrum.
	- \blacktriangleright Advantage:
		- \triangleright Computationally inexpensive, fast.

- ▶ Reynolds averaged (Navier-Stokes) simulation (RANS)
	- \triangleright Opposite strategy:
		- \triangleright Applications that only require average statistics of the flow (i.e. the mean flow).
		- Integrate merely the ensemble-averaged equations.
		- \blacktriangleright Parameterize turbulence over the whole eddy spectrum.
	- \blacktriangleright Advantage:
		- \triangleright Computationally inexpensive, fast.
	- \blacktriangleright Problem:
		- \blacktriangleright Turbulent fluctuations not explicitly captured.
		- \blacktriangleright Parameterizations are very sensitive to large-eddy structure that depends on environmental conditions such as geometry and stratification \rightarrow Parameterizations are not valid for a wide range of different flows.

- ▶ Reynolds averaged (Navier-Stokes) simulation (RANS)
	- \triangleright Opposite strategy:
		- \triangleright Applications that only require average statistics of the flow (i.e. the mean flow).
		- Integrate merely the ensemble-averaged equations.
		- \blacktriangleright Parameterize turbulence over the whole eddy spectrum.
	- \blacktriangleright Advantage:
		- \triangleright Computationally inexpensive, fast.
	- \blacktriangleright Problem:
		- \blacktriangleright Turbulent fluctuations not explicitly captured.
		- \blacktriangleright Parameterizations are very sensitive to large-eddy structure that depends on environmental conditions such as geometry and stratification \rightarrow Parameterizations are not valid for a wide range of different flows.
	- \blacktriangleright Consequence:
		- \triangleright Not suitable for detailed turbulence studies.

\blacktriangleright Large eddy simulation (LES)

 \triangleright Seeks to combine advantages and avoid disadvantages of DNS and RANS by treating large scales and small scales separately, based on Kolmogorov's (1941) similarity theory of turbulence.

- \triangleright Seeks to combine advantages and avoid disadvantages of DNS and RANS by treating large scales and small scales separately, based on Kolmogorov's (1941) similarity theory of turbulence.
- \blacktriangleright Large eddies are explicitly resolved.

- \triangleright Seeks to combine advantages and avoid disadvantages of DNS and RANS by treating large scales and small scales separately, based on Kolmogorov's (1941) similarity theory of turbulence.
- \blacktriangleright Large eddies are explicitly resolved.
- \triangleright The impact of small eddies on the large-scale flow is parameterized.

- \triangleright Seeks to combine advantages and avoid disadvantages of DNS and RANS by treating large scales and small scales separately, based on Kolmogorov's (1941) similarity theory of turbulence.
- \blacktriangleright Large eddies are explicitly resolved.
- \triangleright The impact of small eddies on the large-scale flow is parameterized.
- \blacktriangleright Advantages:
	- \blacktriangleright Highly turbulent flows can be simulated.
	- lget Local homogeneity and isotropy at large Re (Kolmogorov's $1st$ hypothesis) leaves parameterizations uniformly valid for a wide range of different flows.

 \blacktriangleright Filtering

\blacktriangleright Filtering

 \blacktriangleright Spectral cut at wavelength ∆x.

\blacktriangleright Filtering

- \triangleright Spectral cut at wavelength ∆x.
- \triangleright Structures larger than Δx are explicitly calculated (resolved scales).

\blacktriangleright Filtering

- \triangleright Spectral cut at wavelength ∆x.
- \triangleright Structures larger than Δx are explicitly calculated (resolved scales).
- \triangleright Structures smaller than Δx must be filtered out (subgrid scales), formally known as low-pass filtering.

\blacktriangleright Filtering

e.g.:

- \triangleright Spectral cut at wavelength ∆x.
- \triangleright Structures larger than Δx are explicitly calculated (resolved scales).
- \triangleright Structures smaller than Δx must be filtered out (subgrid scales), formally known as low-pass filtering.
- \blacktriangleright Like for Reynolds averaging: split variables in mean part and fluctuation, spatially average the model equations,

\blacktriangleright Filtering

- \triangleright Spectral cut at wavelength ∆x.
- \triangleright Structures larger than Δx are explicitly calculated (resolved scales).
- \triangleright Structures smaller than Δx must be filtered out (subgrid scales), formally known as low-pass filtering.
- \blacktriangleright Like for Reynolds averaging: split variables in mean part and fluctuation, spatially average the model equations, e.g.:

$$
w=\overline{w}+w',\theta=\overline{\theta}+\theta'
$$

- \triangleright The filter procedure removes the small scales from the model equations, but it produces new unknowns, mainly averages of fluctuation products.
	- \blacktriangleright eg. $w'\theta'$

- \triangleright The filter procedure removes the small scales from the model equations, but it produces new unknowns, mainly averages of fluctuation products.
	- \blacktriangleright eg. $w'\theta'$
- \triangleright These unknowns describe the effect of the unresolved, small scales on the resolved, large scales; therefore it is important to include them in the model.

- \triangleright The filter procedure removes the small scales from the model equations, but it produces new unknowns, mainly averages of fluctuation products.
	- \blacktriangleright eg. $w'\theta'$
- \triangleright These unknowns describe the effect of the unresolved, small scales on the resolved, large scales; therefore it is important to include them in the model.
- \triangleright We do not have information about the variables (e.g., vertical wind component and potential temperature) on these small scales of their fluctuations.

- \triangleright The filter procedure removes the small scales from the model equations, but it produces new unknowns, mainly averages of fluctuation products.
	- \blacktriangleright eg. $w'\theta'$
- \triangleright These unknowns describe the effect of the unresolved, small scales on the resolved, large scales; therefore it is important to include them in the model.
- \triangleright We do not have information about the variables (e.g., vertical wind component and potential temperature) on these small scales of their fluctuations.
- \triangleright Therefore, these unknowns have to be parameterized using information from the resolved scales.
	- \triangleright A typical example is the flux-gradient relationship, e.g.,

$$
\overline{w'\theta'} = -\nu_{\rm h} \cdot \frac{\partial \overline{\theta}}{\partial z}
$$

