Basic Equations

PALM group

Institute of Meteorology and Climatology, Leibniz Universität Hannover

last update: 21st September 2015

Filtered equations

Basic equations, Unfiltered

Basic equations ●000	Scale Separation	Filtered equation
Basic equations, Unfiltered		

Navier-Stokes equations

$$\rho \frac{\partial u_i}{\partial t} + \rho u_k \frac{\partial u_i}{\partial x_k} = -\frac{\partial p}{\partial x_i} - \rho \varepsilon_{ijk} f_j u_k - \rho \frac{\partial \phi}{\partial x_i} + \mu \left\{ \frac{\partial^2 u_i}{\partial x_k^2} + \frac{1}{3} \frac{\partial}{\partial x_i} \left(\frac{\partial u_k}{\partial x_k} \right) \right\}$$

Basic equations	Scale Separation	Filtered equa
	000	000
Basic equations, Unfiltered		

Navier-Stokes equations

$$\rho \frac{\partial u_i}{\partial t} + \rho u_k \frac{\partial u_i}{\partial x_k} = -\frac{\partial p}{\partial x_i} - \rho \varepsilon_{ijk} f_j u_k - \rho \frac{\partial \phi}{\partial x_i} + \mu \left\{ \frac{\partial^2 u_i}{\partial x_k^2} + \frac{1}{3} \frac{\partial}{\partial x_i} \left(\frac{\partial u_k}{\partial x_k} \right) \right\}$$

► First principle

$$\rho \frac{\partial T}{\partial t} + \rho u_k \frac{\partial T}{\partial x_k} = \mu_{\rm h} \frac{\partial^2 T}{\partial x_k^2} + Q$$

Basic equations	Scale Separation	Filte
●000		
Basic equations, Unfiltered		

Navier-Stokes equations

$$\rho \frac{\partial u_i}{\partial t} + \rho u_k \frac{\partial u_i}{\partial x_k} = -\frac{\partial p}{\partial x_i} - \rho \varepsilon_{ijk} f_j u_k - \rho \frac{\partial \phi}{\partial x_i} + \mu \left\{ \frac{\partial^2 u_i}{\partial x_k^2} + \frac{1}{3} \frac{\partial}{\partial x_i} \left(\frac{\partial u_k}{\partial x_k} \right) \right\}$$

► First principle

$$\rho \frac{\partial T}{\partial t} + \rho u_k \frac{\partial T}{\partial x_k} = \mu_{\rm h} \frac{\partial^2 T}{\partial x_k^2} + Q$$

Equation for passive scalar

$$\rho \frac{\partial \psi}{\partial t} + \rho u_k \frac{\partial \psi}{\partial x_k} = \mu_{\psi} \frac{\partial^2 \psi}{\partial x_k^2} + Q_{\psi}$$

Basic equations	Scale Separation	Filt
Basic equations, Unfiltered		

Navier-Stokes equations

$$\rho \frac{\partial u_i}{\partial t} + \rho u_k \frac{\partial u_i}{\partial x_k} = -\frac{\partial p}{\partial x_i} - \rho \varepsilon_{ijk} f_j u_k - \rho \frac{\partial \phi}{\partial x_i} + \mu \left\{ \frac{\partial^2 u_i}{\partial x_k^2} + \frac{1}{3} \frac{\partial}{\partial x_i} \left(\frac{\partial u_k}{\partial x_k} \right) \right\}$$

First principle

$$\rho \frac{\partial T}{\partial t} + \rho u_k \frac{\partial T}{\partial x_k} = \mu_{\rm h} \frac{\partial^2 T}{\partial x_k^2} + Q$$

Equation for passive scalar

$$\rho \frac{\partial \psi}{\partial t} + \rho u_k \frac{\partial \psi}{\partial x_k} = \mu_{\psi} \frac{\partial^2 \psi}{\partial x_k^2} + Q_{\psi}$$

Continuity equation

$$\frac{\partial \rho}{\partial t} = -\frac{\partial \rho u_k}{\partial x_k}$$

Filtered equations

Boussinesq Approximation

Basic equations o●oo	Scale Separation 000	Filtered equations
Basic equations, Unfiltered		

Boussinesq Approximation

- Splitting thermodynamic variables into a basic state ψ_0 and a variation ψ^*

$$\begin{split} T(x, y, z, t) &= T_0(x, y, z) &+ T^*(x, y, z, t) \\ \rho(x, y, z, t) &= \rho_0(x, y, z) &+ \rho^*(x, y, z, t) \\ \rho(x, y, z, t) &= \rho_0(z) &+ \rho^*(x, y, z, t); &\psi^* << \psi_0 \end{split}$$

Basic equations o●oo	Scale Separation 000	Filtered equations
Basic equations, Unfiltered		

Boussinesq Approximation

- Splitting thermodynamic variables into a basic state ψ_0 and a variation ψ^*

$$\begin{split} T(x, y, z, t) &= T_0(x, y, z) &+ T^*(x, y, z, t) \\ p(x, y, z, t) &= p_0(x, y, z) &+ p^*(x, y, z, t) \\ \rho(x, y, z, t) &= \rho_0(z) &+ \rho^*(x, y, z, t); &\psi^* << \psi_0 \end{split}$$

Hydrostatic equilibrium, geostrophic wind (not included in Boussinesq)

$$rac{\partial
ho_0}{\partial z} = -g
ho_0 \qquad \quad rac{1}{
ho_0}rac{\partial
ho_0}{\partial x} = -f
m v_g, \quad \quad rac{1}{
ho_0}rac{\partial
ho_0}{\partial y} = f
m u_g$$

Basic equations ⊙●○○	Scale Separation 000	Filtered equations
Basic equations. Unfiltered		

Boussinesq Approximation

- Splitting thermodynamic variables into a basic state ψ_0 and a variation ψ^*

$$\begin{split} & T(x, y, z, t) = T_0(x, y, z) & + T^*(x, y, z, t) \\ & \rho(x, y, z, t) = \rho_0(x, y, z) & + \rho^*(x, y, z, t) \\ & \rho(x, y, z, t) = \rho_0(z) & + \rho^*(x, y, z, t); & \psi^* << \psi_0 \end{split}$$

Hydrostatic equilibrium, geostrophic wind (not included in Boussinesq)

$$\frac{\partial p_0}{\partial z} = -g \rho_0 \qquad \quad \frac{1}{\rho_0} \frac{\partial p_0}{\partial x} = -f v_{\rm g}, \qquad \frac{1}{\rho_0} \frac{\partial p_0}{\partial y} = f u_{\rm g}$$

Equation of state

$$p = \rho RT \to \ln p = \ln \rho + \ln R + \ln T \to \frac{dp}{p} = \frac{d\rho}{\rho} + \frac{dT}{T}$$
$$\frac{\Delta p}{\rho_0} \approx \frac{\Delta \rho}{\rho_0} + \frac{\Delta T}{T_0} \to \frac{p^*}{\rho_0} \approx \frac{\rho^*}{\rho_0} + \frac{T^*}{T_0} \qquad \frac{\rho^*}{\rho_0} \approx -\frac{T^*}{T_0}$$

Jannovei

Continuity Equation

PALM Seminar

Continuity Equation

$$\frac{\partial \rho_0(z)}{\partial t} = -\frac{\partial \rho_0(z)u_k}{\partial x_k} \qquad \qquad \frac{\partial \rho_0 u_k}{\partial x_k} = 0 \qquad \text{anelastic approximation}$$

Continuity Equation

$$\frac{\partial \rho_0(z)}{\partial t} = -\frac{\partial \rho_0(z)u_k}{\partial x_k} \qquad \qquad \frac{\partial \rho_0 u_k}{\partial x_k} = 0 \qquad \text{anelastic approximation}$$
$$\rho_0 = const. \qquad \qquad \frac{\partial u_k}{\partial x_k} = 0 \qquad \text{incompressible flow}$$

Filtered equations

Boussinesq Approximated Equations

Basic equations	Scale Separation	Filtered eq
000●	000	000
Basic equations, Unfiltered		

Navier-Stokes equations

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_k u_i}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial p^*}{\partial x_i} - \varepsilon_{ijk} f_j u_k + \varepsilon_{i3k} f_3 u_{kg} + g \frac{T - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 u_i}{\partial x_k^2}$$

Basic equations	Scale Sepa
000●	000
Basic equations. Unfiltered	

Navier-Stokes equations

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_k u_i}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial p^*}{\partial x_i} - \varepsilon_{ijk} f_j u_k + \varepsilon_{i3k} f_3 u_{kg} + g \frac{T - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 u_i}{\partial x_k^2}$$

First principle

$$\frac{\partial T}{\partial t} + u_k \frac{\partial T}{\partial x_k} = \nu_{\rm h} \frac{\partial^2 T}{\partial x_k^2} + Q$$

Basic equations 000●
Basic equations. Unfiltered

Navier-Stokes equations

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_k u_i}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial p^*}{\partial x_i} - \varepsilon_{ijk} f_j u_k + \varepsilon_{i3k} f_3 u_{kg} + g \frac{T - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 u_i}{\partial x_k^2}$$

First principle

$$\frac{\partial T}{\partial t} + u_k \frac{\partial T}{\partial x_k} = \nu_{\rm h} \frac{\partial^2 T}{\partial x_k^2} + Q$$

Equation for passive scalar

$$\frac{\partial \psi}{\partial t} + u_k \frac{\partial \psi}{\partial x_k} = \nu_{\psi} \frac{\partial^2 \psi}{\partial x_k^2} + Q_{\psi}$$

Basic equations 000●
Basic equations. Unfiltered

Navier-Stokes equations

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_k u_i}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial p^*}{\partial x_i} - \varepsilon_{ijk} f_j u_k + \varepsilon_{i3k} f_3 u_{kg} + g \frac{T - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 u_i}{\partial x_k^2}$$

First principle

$$\frac{\partial T}{\partial t} + u_k \frac{\partial T}{\partial x_k} = \nu_{\rm h} \frac{\partial^2 T}{\partial x_k^2} + Q$$

Equation for passive scalar

$$\frac{\partial \psi}{\partial t} + u_k \frac{\partial \psi}{\partial x_k} = \nu_{\psi} \frac{\partial^2 \psi}{\partial x_k^2} + Q_{\psi}$$

Continuity equation

$$\frac{\partial u_k}{\partial x_k} = 0$$

Basic equations 000●	Scale Separation
Basic equations, Unfiltered	

Navier-Stokes equations

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_k u_i}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial p^*}{\partial x_i} - \varepsilon_{ijk} f_j u_k + \varepsilon_{i3k} f_3 u_{kg} + g \frac{T - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 u_i}{\partial x_k^2}$$

First principle

$$\frac{\partial T}{\partial t} + u_k \frac{\partial T}{\partial x_k} = \nu_{\rm h} \frac{\partial^2 T}{\partial x_k^2} + \zeta$$

Equation for passive scalar

$$\frac{\partial \psi}{\partial t} + u_k \frac{\partial \psi}{\partial x_k} = \nu_{\psi} \frac{\partial^2 \psi}{\partial x_k^2} + Q_{\psi}$$

This set of equations is valid for almost all kind of CFD models!

Continuity equation

$$\frac{\partial u_k}{\partial x_k} = 0$$

lannovei

Basic equations 0000 Scale Separation by Spatial Filtering Scale Separation

LES - Scale Separation by Spatial Filtering (I)

► LES technique is based on scale separation, in order to reduce the number of degrees of freedom of the solution. Ψ(x_i, t) = Ψ(x_i, t) + Ψ'(x_i, t)

Basic equations 0000 Scale Separation by Spatial Filtering Scale Separation $\bullet \circ \circ$

Filtered equations

LES - Scale Separation by Spatial Filtering (I)

- ► LES technique is based on scale separation, in order to reduce the number of degrees of freedom of the solution. Ψ(x_i, t) = Ψ(x_i, t) + Ψ'(x_i, t)
- Large / low-frequency modes Ψ are calculated directly (resolved scales).

Basic equations 0000 Scale Separation by Spatial Filtering

LES - Scale Separation by Spatial Filtering (I)

- ► LES technique is based on scale separation, in order to reduce the number of degrees of freedom of the solution. Ψ(x_i, t) = Ψ(x_i, t) + Ψ'(x_i, t)
- Large / low-frequency modes Ψ are calculated directly (resolved scales).
- Small / high-frequency modes Ψ' are parameterized using a statistical model (subgrid / subfilter scales, SGS model).

LES - Scale Separation by Spatial Filtering (I)

- ► LES technique is based on scale separation, in order to reduce the number of degrees of freedom of the solution. Ψ(x_i, t) = Ψ(x_i, t) + Ψ'(x_i, t)
- Large / low-frequency modes Ψ are calculated directly (resolved scales).
- Small / high-frequency modes Ψ' are parameterized using a statistical model (subgrid / subfilter scales, SGS model).
- These two categories of scales are seperated by defining a cutoff length Δ .

Basic equations Scale Separation F 0000 0€0 C Scale Separation by Spatial Filtering

Filtered equations

LES - Scale Separation by Spatial Filtering (II)

The Filter applied is a spatial filter:

$$\overline{\Psi}(x_i) = \int_D G(x_i - x'_i)\Psi(x'_i)dx'_i$$

 $\overline{\Psi}'(x_i) = 0 \quad but \quad \overline{\overline{\Psi}} \neq \overline{\Psi}(x_i)$

LES - Scale Separation by Spatial Filtering (II)

• The Filter applied is a spatial filter:

$$\overline{\Psi}(x_i) = \int_D G(x_i - x'_i) \Psi(x'_i) dx'_i$$

$$\overline{\Psi}'(x_i) = 0$$
 but $\overline{\overline{\Psi}} \neq \overline{\Psi}(x_i)$

Filter applied to the nonlinear advection term:

$$\overline{u_k u_i} = \overline{(\overline{u_k} + u'_k)(\overline{u_i} + u'_i)} = \overline{\overline{u_k}} \overline{\overline{u_i}} + \underbrace{\overline{\overline{u_k}u'_i} + \overline{u'_k\overline{u_i}}}_{C_{ki}} + \underbrace{\overline{u'_ku'_i}}_{R_{ki}}$$

LES - Scale Separation by Spatial Filtering (II)

• The Filter applied is a spatial filter:

$$\overline{\Psi}(x_i) = \int_D G(x_i - x'_i) \Psi(x'_i) dx'_i$$

$$\overline{\Psi}'(x_i) = 0$$
 but $\overline{\overline{\Psi}}
eq \overline{\Psi}(x_i)$

Filter applied to the nonlinear advection term:

$$\overline{u_k u_i} = \overline{(\overline{u_k} + u'_k)(\overline{u_i} + u'_i)} = \overline{\overline{u_k}} \overline{\overline{u_i}} + \underbrace{\overline{\overline{u_k}u'_i} + \overline{u'_k \overline{u_i}}}_{C_{ki}} + \underbrace{\overline{u'_k u'_i}}_{R_{ki}}$$

- *R_{ki}*: **Reynolds-stress**
- C_{ki} : cross-stress
- L_{ki}: Leonard-stress
- τ_{ki} : total stress-tensor
 - generalized Reynolds stress

Leibniz Universität Hannover Scale Separation $0 \bullet 0$

Basic equations 0000 Scale Separation by Spatial Filtering

LES - Scale Separation by Spatial Filtering (II)

• The Filter applied is a spatial filter:

$$\overline{\Psi}(x_i) = \int_D G(x_i - x'_i) \Psi(x'_i) dx'_i$$

$$\overline{\Psi}'(x_i) = 0$$
 but $\overline{\overline{\Psi}} \neq \overline{\Psi}(x_i)$

Ensemble average:

$$\overline{\overline{\Psi}}(x_i) = \overline{\Psi}(x_i)$$

 $\overline{u_k u_i} = \overline{u_k} \overline{u_i} + \overline{u'_k u'_i}$

Filter applied to the nonlinear advection term:

$$\overline{u_k u_i} = \overline{(\overline{u_k} + u'_k)(\overline{u_i} + u'_i)} = \overline{\overline{u_k}} \overline{\overline{u_i}} + \underbrace{\overline{\overline{u_k}u'_i} + \overline{u'_k \overline{u_i}}}_{C_{ki}} + \underbrace{\overline{u'_k u'_i}}_{R_{ki}}$$

- *R_{ki}*: **Reynolds-stress**
- C_{ki} : cross-stress
- L_{ki}: Leonard-stress
- τ_{ki} : total stress-tensor
 - generalized Reynolds stress

Leibniz Universität Hannover

Filtered equations

Scale Separation $0 \bullet 0$

Basic equations 0000 Scale Separation by Spatial <u>Filtering</u> Filtered equations

LES - Scale Separation by Spatial Filtering (II)

• The Filter applied is a spatial filter:

$$\overline{\Psi}(x_i) = \int_D G(x_i - x'_i) \Psi(x'_i) dx'_i$$

$$\overline{\Psi}'(x_i) = 0$$
 but $\overline{\overline{\Psi}} \neq \overline{\Psi}(x_i)$

Ensemble average:

$$\overline{\overline{\Psi}}(x_i) = \overline{\Psi}(x_i)$$

 $\overline{u_k u_i} = \overline{u_k} \overline{u_i} + \overline{u'_k u'_i}$

• Filter applied to the nonlinear advection term:

$$\overline{u_k u_i} = \overline{(\overline{u_k} + u'_k)(\overline{u_i} + u'_i)} = \overline{\overline{u_k}} \overline{\overline{u_i}} + \underbrace{\overline{\overline{u_k}u'_i} + \overline{u'_k\overline{u_i}}}_{C_{ki}} + \underbrace{\overline{u'_ku'_i}}_{R_{ki}}$$

Leonard proposes a further decomposition:

$$\overline{\overline{u_k} \ \overline{u_i}} = \overline{u_k} \ \overline{u_i} + \underbrace{\left(\overline{\overline{u_k} \ \overline{u_i}} - \overline{u_k} \ \overline{u_i}\right)}_{L_{ki}}$$

$\overline{u_k u_i} = \overline{u_k} \, \overline{u_i} + L_{ki} + C_{ki} + R_{ki} = \overline{u_k} \, \overline{u_i} + \tau_{ki}$

- *R_{ki}*: **Reynolds-stress**
- C_{ki} : cross-stress
- L_{ki}: Leonard-stress
- τ_{ki} : total stress-tensor
 - generalized Reynolds stress

Filtered equations

Scale Separation by Spatial Filtering

LES - Scale Separation by Spatial Filtering (III)

Ensemble average:

$$\overline{\overline{\Psi}}(x_i) = \overline{\Psi}(x_i)$$

 $\overline{u_k u_i} = \overline{u_k} \overline{u_i} + \overline{u'_k u'_i}$

Scale Separation
000

Filtered equations

LES - Scale Separation by Spatial Filtering (III)

 Volume-balance approach (Schumann, 1975) advantage: numerical discretization acts as a Reynolds operator

$$\Psi(V,t) = \frac{1}{\Delta x \cdot \Delta y \cdot \Delta z} = \int \int \int_{V} \Psi(V',t) dV' \qquad \boxed{\overline{u_{k}u_{i}} = \overline{u_{k}} \overline{u_{i}} + \overline{u_{k}}}$$
$$\overline{\Psi'}(x_{i}) = 0 \quad \text{and} \quad \overline{\overline{\Psi}} = \overline{\Psi}$$
$$V = \left[x - \frac{\Delta x}{2}, x + \frac{\Delta x}{2}\right] \times \left[y - \frac{\Delta y}{2}, y + \frac{\Delta y}{2}\right] \times \left[z - \frac{\Delta z}{2}, z + \frac{\Delta z}{2}\right]$$

Ensemble average:

$$\overline{\overline{\Psi}}(x_i) = \overline{\Psi}(x_i)$$

 $\overline{u_k u_i} = \overline{u_k} \ \overline{u_i} + \overline{u'_k u'_i}$

Leibniz Universität Hannover

Filtered equations

 $\overline{u_i} + \overline{u'_{\mu}u'_{\mu}}$

Ensemble average: $\overline{\overline{\Psi}}(x_i) = \overline{\Psi}(x_i)$

LES - Scale Separation by Spatial Filtering (III)

 Volume-balance approach (Schumann, 1975) advantage: numerical discretization acts as a Reynolds operator

$$\Psi(V,t) = \frac{1}{\Delta x \cdot \Delta y \cdot \Delta z} = \int \int \int_{V} \Psi(V',t) dV' \qquad \boxed{\overline{u_{k}u_{i}} = \overline{u_{k}} \overline{u_{i}}}$$
$$\overline{\Psi'}(x_{i}) = 0 \quad \text{and} \quad \overline{\overline{\Psi}} = \overline{\Psi}$$
$$V = \left[x - \frac{\Delta x}{2}, x + \frac{\Delta x}{2}\right] \times \left[y - \frac{\Delta y}{2}, y + \frac{\Delta y}{2}\right] \times \left[z - \frac{\Delta z}{2}, z + \frac{\Delta z}{2}\right]$$

Filter applied to the nonlinear advection term:

$$\overline{u_k u_i} = \overline{(\overline{u_k} + u'_k)(\overline{u_i} + u'_i)} = \overline{u_k} \, \overline{u_i} + \overline{u'_k u'_i}$$

The Filtered Equations

Basic equations 0000	Scale Separation	Filtered equations ●○○
The Filtered Equations		

$$\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial \overline{u_k} \,\overline{u_i}}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial \overline{p}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u}_{kg} + g \frac{\overline{T} - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}}{\partial x_k} - \frac{\partial \overline{u_k}}{\partial x_k} - \frac{\partial \overline{u_k}}{\partial$$

Basic equations 0000	Scale Separation	Filtered equations ●00
The Filtered Equations		

$$\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial \overline{u_k} \overline{u_i}}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial \overline{p}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u}_{kg} + g \frac{\overline{T} - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}}{\partial x_k} - \frac{\partial \tau_{ki}}{\partial x$$

▶ The previous derivation completely ignores the existance of the computational grid.

Basic equations 0000	Scale Separation	Filtered equations ●00
The Filtered Equations		

$$\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial \overline{u_k} \overline{u_i}}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial \overline{p}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u}_{kg} + g \frac{\overline{T} - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}}{\partial x_k} - \frac{\partial \tau_{ki}}{\partial x$$

- ▶ The previous derivation completely ignores the existance of the computational grid.
- The computational grid introduces another space scale: the discretization step Δx_i .

Basic equations 0000	Scale Separation	Filtered equations •00
The Filtered Equations		

$$\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial \overline{u_k} \overline{u_i}}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial \overline{p}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u}_{kg} + g \frac{\overline{T} - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}}{\partial x_k} - \frac{\partial \overline{u_k}}{\partial x$$

- ▶ The previous derivation completely ignores the existance of the computational grid.
- The computational grid introduces another space scale: the discretization step Δx_i .
- Δx_i has to be small enough to be able to apply the filtering process correctly: $\Delta x_i \leq \Delta$

$$\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial \overline{u_k} \,\overline{u_i}}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial \overline{p}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u}_{kg} + g \frac{\overline{T} - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}}{\partial x_k} \delta_{i3} + \frac{\partial \overline{u_i}}{\partial x_k} + \frac{\partial \overline{u_i}}{\partial x_k} \delta_{i3} + \frac{\partial \overline{u_i}}{\partial x_k} +$$

- The previous derivation completely ignores the existance of the computational grid.
- The computational grid introduces another space scale: the discretization step Δx_i .
- ► Δx_i has to be small enough to be able to apply the filtering process correctly: $\Delta x_i \leq \Delta$
- Two possibilities:

 Pre-filtering technique (Δx < Δ, explicit filtering)
 Linking the analytical filter to the computational grid (Δx = Δ, implicit filtering)

Filtered equations $0 \bullet 0$

- Explicit filtering:
 - Requires that the analytical filter is applied explicitly.

- Explicit filtering:
 - Requires that the analytical filter is applied explicitly.
 - ▶ Rarely used in practice, due to additional computational costs.

- Explicit filtering:
 - Requires that the analytical filter is applied explicitly.
 - Rarely used in practice, due to additional computational costs.
- Implicit filtering:
 - The analytical cutoff length is associated with the grid spacing.

- Explicit filtering:
 - Requires that the analytical filter is applied explicitly.
 - Rarely used in practice, due to additional computational costs.
- Implicit filtering:
 - The analytical cutoff length is associated with the grid spacing.
 - This method does not require the use of an analytical filter.

Basic equations

- Explicit filtering:
 - Requires that the analytical filter is applied explicitly.
 - Rarely used in practice, due to additional computational costs.
- Implicit filtering:
 - The analytical cutoff length is associated with the grid spacing.
 - This method does not require the use of an analytical filter.
 - The filter characteristic cannot really be controlled.

Basic equations

- Explicit filtering:
 - Requires that the analytical filter is applied explicitly.
 - Rarely used in practice, due to additional computational costs.
- Implicit filtering:
 - The analytical cutoff length is associated with the grid spacing.
 - This method does not require the use of an analytical filter.
 - The filter characteristic cannot really be controlled.
 - Because of its simplicity, this method is used by nearly all LES models.

- Explicit filtering:
 - Requires that the analytical filter is applied explicitly.
 - Rarely used in practice, due to additional computational costs.
- Implicit filtering:
 - The analytical cutoff length is associated with the grid spacing.
 - This method does not require the use of an analytical filter.
 - The filter characteristic cannot really be controlled.
 - Because of its simplicity, this method is used by nearly all LES models.

Literature:

Sagaut, P., 2001: Large eddy simulation for incompressible flows: An introduction. Springer Verlag, Berlin/Heidelberg/New York, 319 pp.

Schumann, U., 1975: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comp. Phys., 18, 376-404.

Jannovei

The Filtered Equations

The Final Set of Equations (PALM)

Basic equations 0000	Scale Separation 000	Filtered equations
The Filtered Equations		

The Final Set of Equations (PALM)

Navier-Stokes equations:

$$\frac{\partial \overline{u_i}}{\partial t} = -\frac{\partial \overline{u_k} \,\overline{u_i}}{\partial x_k} - \frac{1}{\rho_0} \frac{\partial \overline{\pi}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u}_{k_g} + g \frac{\overline{\theta} - \theta_0}{\theta_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}^r}{\partial x_k}$$

The Final Set of Equations (PALM)

Navier-Stokes equations:

$$\frac{\partial \overline{u_i}}{\partial t} = -\frac{\partial \overline{u_k} \, \overline{u_i}}{\partial x_k} - \frac{1}{\rho_0} \frac{\partial \overline{\pi}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u}_{kg} + g \frac{\overline{\theta} - \theta_0}{\theta_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}^r}{\partial x_k}$$

$$\tau_{ki}^{r} = \tau_{ki} - \frac{1}{3}\tau_{jj}\delta_{ki}$$
$$\overline{\pi}^{*} = \overline{p}^{*} + \frac{1}{3}\tau_{jj}\delta_{ki}$$

Basic equations

The Final Set of Equations (PALM)

Navier-Stokes equations:

 $\frac{\partial \overline{u_i}}{\partial t} = -\frac{\partial \overline{u_k} \, \overline{u_i}}{\partial x_k} - \frac{1}{\rho_0} \frac{\partial \overline{\pi}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u}_{kg} + g \frac{\overline{\theta} - \theta_0}{\theta_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}^r}{\partial x_k}$

First principle (using potential temperature):

$$\frac{\partial \overline{\theta}}{\partial t} = -\frac{\partial \overline{u_k} \overline{\theta}}{\partial x_k} - \frac{\partial H_k}{\partial x_k} + Q_{\theta}$$

$$\tau_{ki}^{r} = \tau_{ki} - \frac{1}{3}\tau_{jj}\delta_{ki}$$
$$\overline{\pi}^{*} = \overline{p}^{*} + \frac{1}{3}\tau_{jj}\delta_{ki}$$

Basic equations

The Final Set of Equations (PALM)

Navier-Stokes equations:

 $\frac{\partial \overline{u_i}}{\partial t} = -\frac{\partial \overline{u_k} \, \overline{u_i}}{\partial x_k} - \frac{1}{\rho_0} \frac{\partial \overline{\pi}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u}_{kg} + g \frac{\overline{\theta} - \theta_0}{\theta_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}^r}{\partial x_k}$

First principle (using potential temperature):

 $\frac{\partial \overline{\theta}}{\partial t} = -\frac{\partial \overline{u_k} \overline{\theta}}{\partial x_k} - \frac{\partial H_k}{\partial x_k} + Q_{\theta}$

 Equation for specific humidity (passive scalar)

$$rac{\partial \overline{q}}{\partial t} = -rac{\partial \overline{u_k} \, \overline{q}}{\partial x_k} - rac{\partial W_k}{\partial x_k} + Q_w$$

$$\tau_{ki}^{r} = \tau_{ki} - \frac{1}{3}\tau_{jj}\delta_{ki}$$
$$\overline{\pi}^{*} = \overline{p}^{*} + \frac{1}{3}\tau_{jj}\delta_{ki}$$

Basic equations

The Final Set of Equations (PALM)

Navier-Stokes equations:

 $\frac{\partial \overline{u_i}}{\partial t} = -\frac{\partial \overline{u_k} \, \overline{u_i}}{\partial x_k} - \frac{1}{\rho_0} \frac{\partial \overline{\pi}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u}_{kg} + g \frac{\overline{\theta} - \theta_0}{\theta_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}^r}{\partial x_k}$

First principle (using potential temperature):

 $\frac{\partial \overline{\theta}}{\partial t} = -\frac{\partial \overline{u_k} \overline{\theta}}{\partial x_k} - \frac{\partial H_k}{\partial x_k} + Q_{\theta}$

 Equation for specific humidity (passive scalar)

$$rac{\partial \overline{m{q}}}{\partial t} = -rac{\partial \overline{u_k} \ \overline{m{q}}}{\partial x_k} - rac{\partial W_k}{\partial x_k} + Q_w$$

Continuity equation

$$\frac{\partial \overline{u_k}}{\partial x_k} = 0$$

$$\tau_{ki}^{r} = \tau_{ki} - \frac{1}{3}\tau_{jj}\delta_{ki}$$
$$\overline{\pi}^{*} = \overline{p}^{*} + \frac{1}{3}\tau_{jj}\delta_{ki}$$

Basic equations

The Final Set of Equations (PALM)

Navier-Stokes equations:

 $\frac{\partial \overline{u_i}}{\partial t} = -\frac{\partial \overline{u_k} \,\overline{u_i}}{\partial x_k} - \frac{1}{\rho_0} \frac{\partial \overline{\pi}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u}_{kg} + g \frac{\overline{\theta} - \theta_0}{\theta_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}^r}{\partial x_k}$

First principle (using potential temperature):

 $\frac{\partial \overline{\theta}}{\partial t} = -\frac{\partial \overline{u_k} \overline{\theta}}{\partial x_k} - \frac{\partial H_k}{\partial x_k} + Q_{\theta}$

 Equation for specific humidity (passive scalar)

$$rac{\partial \overline{m{q}}}{\partial t} = -rac{\partial \overline{u_k} \, \overline{m{q}}}{\partial x_k} - rac{\partial W_k}{\partial x_k} + Q_w$$

Continuity equation

$$\frac{\partial \overline{u_k}}{\partial x_k} = 0$$

PALM group

normal stresses included in the stress tensor are now included in a modified dynamic pressure:

$$\tau_{ki}^{r} = \tau_{ki} - \frac{1}{3}\tau_{jj}\delta_{ki}$$
$$\overline{\pi}^{*} = \overline{p}^{*} + \frac{1}{3}\tau_{jj}\delta_{ki}$$

subgrid-scale stresses (fluxes) to be parameterized in the SGS model: $\tau_{ki} = \overline{u_k u_i} - \overline{u_k} \overline{u_i}$ $H_k = \overline{u_k \overline{\theta}} - \overline{u_k} \overline{\overline{\theta}}$ $W_k = \overline{u_k \overline{q}} - \overline{u_k} \overline{\overline{q}}$

