Basic Equations

PALM group

Institute of Meteorology and Climatology, Leibniz Universität Hannover

last update: 21st September 2015

 \blacktriangleright Navier-Stokes equations

$$
\rho \frac{\partial u_i}{\partial t} + \rho u_k \frac{\partial u_i}{\partial x_k} = -\frac{\partial p}{\partial x_i} - \rho \varepsilon_{ijk} f_j u_k - \rho \frac{\partial \phi}{\partial x_i} + \mu \left\{ \frac{\partial^2 u_i}{\partial x_k^2} + \frac{1}{3} \frac{\partial}{\partial x_i} \left(\frac{\partial u_k}{\partial x_k} \right) \right\}
$$

 \blacktriangleright Navier-Stokes equations

$$
\rho \frac{\partial u_i}{\partial t} + \rho u_k \frac{\partial u_i}{\partial x_k} = -\frac{\partial p}{\partial x_i} - \rho \varepsilon_{ijk} f_j u_k - \rho \frac{\partial \phi}{\partial x_i} + \mu \left\{ \frac{\partial^2 u_i}{\partial x_k^2} + \frac{1}{3} \frac{\partial}{\partial x_i} \left(\frac{\partial u_k}{\partial x_k} \right) \right\}
$$

 \blacktriangleright First principle

$$
\rho \frac{\partial T}{\partial t} + \rho u_k \frac{\partial T}{\partial x_k} = \mu_{\rm h} \frac{\partial^2 T}{\partial x_k^2} + Q
$$

 \blacktriangleright Navier-Stokes equations

$$
\rho \frac{\partial u_i}{\partial t} + \rho u_k \frac{\partial u_i}{\partial x_k} = -\frac{\partial p}{\partial x_i} - \rho \varepsilon_{ijk} f_j u_k - \rho \frac{\partial \phi}{\partial x_i} + \mu \left\{ \frac{\partial^2 u_i}{\partial x_k^2} + \frac{1}{3} \frac{\partial}{\partial x_i} \left(\frac{\partial u_k}{\partial x_k} \right) \right\}
$$

 \blacktriangleright First principle

$$
\rho \frac{\partial T}{\partial t} + \rho u_k \frac{\partial T}{\partial x_k} = \mu_{\rm h} \frac{\partial^2 T}{\partial x_k^2} + Q
$$

 \blacktriangleright Equation for passive scalar

$$
\rho \frac{\partial \psi}{\partial t} + \rho u_k \frac{\partial \psi}{\partial x_k} = \mu_\psi \frac{\partial^2 \psi}{\partial x_k^2} + Q_\psi
$$

Hannovei

 100

 \blacktriangleright Navier-Stokes equations

$$
\rho \frac{\partial u_i}{\partial t} + \rho u_k \frac{\partial u_i}{\partial x_k} = -\frac{\partial p}{\partial x_i} - \rho \varepsilon_{ijk} f_j u_k - \rho \frac{\partial \phi}{\partial x_i} + \mu \left\{ \frac{\partial^2 u_i}{\partial x_k^2} + \frac{1}{3} \frac{\partial}{\partial x_i} \left(\frac{\partial u_k}{\partial x_k} \right) \right\}
$$

 \blacktriangleright First principle

$$
\rho \frac{\partial T}{\partial t} + \rho u_k \frac{\partial T}{\partial x_k} = \mu_{\rm h} \frac{\partial^2 T}{\partial x_k^2} + Q
$$

 \blacktriangleright Equation for passive scalar

$$
\rho \frac{\partial \psi}{\partial t} + \rho u_k \frac{\partial \psi}{\partial x_k} = \mu_\psi \frac{\partial^2 \psi}{\partial x_k^2} + Q_\psi
$$

 \blacktriangleright Continuity equation

$$
\frac{\partial \rho}{\partial t} = -\frac{\partial \rho u_k}{\partial x_k}
$$

[Scale Separation](#page-19-0) [Filtered equations](#page-31-0) Scale Separations Scale Separations Scale Separations Scale Separations Sc

Scale Separation Scale Separations Scale Separations Scale Separations Scale Separations Scale Separations Sc

Boussinesq Approximation

Boussinesq Approximation

► Splitting thermodynamic variables into a basic state ψ_0 and a variation ψ^*

$$
T(x, y, z, t) = T_0(x, y, z) + T^*(x, y, z, t)
$$

\n
$$
p(x, y, z, t) = p_0(x, y, z) + p^*(x, y, z, t)
$$

\n
$$
\rho(x, y, z, t) = \rho_0(z) + p^*(x, y, z, t); \qquad \psi^* << \psi_0
$$

Boussinesq Approximation

► Splitting thermodynamic variables into a basic state ψ_0 and a variation ψ^*

$$
T(x, y, z, t) = T_0(x, y, z) + T^*(x, y, z, t)
$$

\n
$$
p(x, y, z, t) = p_0(x, y, z) + p^*(x, y, z, t)
$$

\n
$$
\rho(x, y, z, t) = \rho_0(z) + p^*(x, y, z, t); \qquad \psi^* << \psi_0
$$

 \blacktriangleright Hydrostatic equilibrium, geostrophic wind (not included in Boussinesq)

$$
\frac{\partial \rho_0}{\partial z} = -g \rho_0 \qquad \qquad \frac{1}{\rho_0} \frac{\partial \rho_0}{\partial x} = -f v_{\rm g}, \qquad \frac{1}{\rho_0} \frac{\partial \rho_0}{\partial y} = f u_{\rm g}
$$

 100

Boussinesq Approximation

► Splitting thermodynamic variables into a basic state ψ_0 and a variation ψ^*

$$
T(x, y, z, t) = T_0(x, y, z) + T^*(x, y, z, t)
$$

\n
$$
p(x, y, z, t) = p_0(x, y, z) + p^*(x, y, z, t)
$$

\n
$$
\rho(x, y, z, t) = \rho_0(z) + p^*(x, y, z, t); \qquad \psi^* << \psi_0
$$

 \blacktriangleright Hydrostatic equilibrium, geostrophic wind (not included in Boussinesq)

$$
\frac{\partial \rho_0}{\partial z} = -g \rho_0 \qquad \qquad \frac{1}{\rho_0} \frac{\partial \rho_0}{\partial x} = -f v_{\rm g}, \qquad \frac{1}{\rho_0} \frac{\partial \rho_0}{\partial y} = f u_{\rm g}
$$

 \blacktriangleright Equation of state

$$
p = \rho RT \to \ln p = \ln \rho + \ln R + \ln T \to \frac{dp}{p} = \frac{d\rho}{\rho} + \frac{dT}{T}
$$

$$
\frac{\Delta p}{p_0} \approx \frac{\Delta \rho}{\rho_0} + \frac{\Delta T}{T_0} \to \frac{p^*}{p_0} \approx \frac{\rho^*}{\rho_0} + \frac{T^*}{T_0} \qquad \frac{\rho^*}{\rho_0} \approx -\frac{T^*}{T_0}
$$

 100

Continuity Equation

Continuity Equation

$$
\frac{\partial \rho_0(z)}{\partial t} = -\frac{\partial \rho_0(z)u_k}{\partial x_k} \qquad \qquad \frac{\partial \rho_0 u_k}{\partial x_k} = 0 \qquad \text{ anelastic approximation}
$$

Continuity Equation

$$
\frac{\partial \rho_0(z)}{\partial t} = -\frac{\partial \rho_0(z)u_k}{\partial x_k} \qquad \frac{\partial \rho_0 u_k}{\partial x_k} = 0 \qquad \text{anelastic approximation}
$$

$$
\rho_0 = \text{const.} \qquad \frac{\partial u_k}{\partial x_k} = 0 \qquad \text{incompressible flow}
$$

[Scale Separation](#page-19-0) [Filtered equations](#page-31-0) Scale Separations Scale Separations Scale Separations Scale Separations Sc

Boussinesq Approximated Equations

 \blacktriangleright Navier-Stokes equations

$$
\frac{\partial u_i}{\partial t} + \frac{\partial u_k u_i}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial p^*}{\partial x_i} - \varepsilon_{ijk} f_j u_k + \varepsilon_{ijk} f_3 u_{k_g} + g \frac{T - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 u_i}{\partial x_k^2}
$$

 \blacktriangleright Navier-Stokes equations

$$
\frac{\partial u_i}{\partial t} + \frac{\partial u_k u_i}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial p^*}{\partial x_i} - \varepsilon_{ijk} f_j u_k + \varepsilon_{ijk} f_3 u_{k_g} + g \frac{T - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 u_i}{\partial x_k^2}
$$

 \blacktriangleright First principle

$$
\frac{\partial T}{\partial t} + u_k \frac{\partial T}{\partial x_k} = \nu_{\rm h} \frac{\partial^2 T}{\partial x_k^2} + Q
$$

 \blacktriangleright Navier-Stokes equations

$$
\frac{\partial u_i}{\partial t} + \frac{\partial u_k u_i}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial p^*}{\partial x_i} - \varepsilon_{ijk} f_j u_k + \varepsilon_{ijk} f_3 u_{k_g} + g \frac{T - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 u_i}{\partial x_k^2}
$$

 \blacktriangleright First principle

$$
\frac{\partial T}{\partial t} + u_k \frac{\partial T}{\partial x_k} = \nu_{\rm h} \frac{\partial^2 T}{\partial x_k^2} + Q
$$

 \blacktriangleright Equation for passive scalar

$$
\frac{\partial \psi}{\partial t} + u_k \frac{\partial \psi}{\partial x_k} = \nu_{\psi} \frac{\partial^2 \psi}{\partial x_k^2} + Q_{\psi}
$$

 \blacktriangleright Navier-Stokes equations

$$
\frac{\partial u_i}{\partial t} + \frac{\partial u_k u_i}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial p^*}{\partial x_i} - \varepsilon_{ijk} f_j u_k + \varepsilon_{ijk} f_3 u_{k_g} + g \frac{T - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 u_i}{\partial x_k^2}
$$

 \blacktriangleright First principle

$$
\frac{\partial T}{\partial t} + u_k \frac{\partial T}{\partial x_k} = \nu_{\rm h} \frac{\partial^2 T}{\partial x_k^2} + Q
$$

 \blacktriangleright Equation for passive scalar

$$
\frac{\partial \psi}{\partial t} + u_k \frac{\partial \psi}{\partial x_k} = \nu_{\psi} \frac{\partial^2 \psi}{\partial x_k^2} + Q_{\psi}
$$

 \blacktriangleright Continuity equation

$$
\frac{\partial u_k}{\partial x_k}=0
$$

 \blacktriangleright Navier-Stokes equations

$$
\frac{\partial u_i}{\partial t} + \frac{\partial u_k u_i}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial p^*}{\partial x_i} - \varepsilon_{ijk} f_j u_k + \varepsilon_{i3k} f_3 u_{k_g} + g \frac{T - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 u_i}{\partial x_k^2}
$$

 \blacktriangleright First principle

$$
\frac{\partial T}{\partial t} + u_k \frac{\partial T}{\partial x_k} = \nu_{\rm h} \frac{\partial^2 T}{\partial x_k^2} + Q
$$

 \blacktriangleright Equation for passive scalar

$$
\frac{\partial \psi}{\partial t} + u_k \frac{\partial \psi}{\partial x_k} = \nu_{\psi} \frac{\partial^2 \psi}{\partial x_k^2} + Q_{\psi}
$$

This set of equations is valid for almost all kind of CFD models!

 \blacktriangleright Continuity equation

$$
\frac{\partial u_k}{\partial x_k}=0
$$

 \blacktriangleright LES technique is based on scale separation, in order to reduce the number of degrees of freedom of the solution. $\big\vert \, \Psi({\sf x}_i,t) = \overline{\Psi}({\sf x}_i,t) + \Psi'({\sf x}_i,t)$

- \triangleright LES technique is based on scale separation, in order to reduce the number of degrees of freedom of the solution. $\big\vert \, \Psi({\sf x}_i,t) = \overline{\Psi}({\sf x}_i,t) + \Psi'({\sf x}_i,t)$
- **I** Large / low-frequency modes Ψ are calculated directly (resolved scales).

- \triangleright LES technique is based on scale separation, in order to reduce the number of degrees of freedom of the solution. $\big\vert \, \Psi({\sf x}_i,t) = \overline{\Psi}({\sf x}_i,t) + \Psi'({\sf x}_i,t)$
- I Large / low-frequency modes Ψ are calculated directly (resolved scales).
- Small / high-frequency modes Ψ' are parameterized using a statistical model (subgrid / subfilter scales, SGS model).

- \triangleright LES technique is based on scale separation, in order to reduce the number of degrees of freedom of the solution. $\big\vert \, \Psi({\sf x}_i,t) = \overline{\Psi}({\sf x}_i,t) + \Psi'({\sf x}_i,t)$
- **I** Large / low-frequency modes Ψ are calculated directly (resolved scales).
- Small / high-frequency modes Ψ' are parameterized using a statistical model (subgrid / subfilter scales, SGS model).
- \triangleright These two categories of scales are seperated by defining a cutoff length Δ .

 \blacktriangleright The Filter applied is a spatial filter:

$$
\overline{\Psi}(x_i) = \int_D G(x_i - x'_i) \Psi(x'_i) dx'_i
$$

$$
\overline{\Psi}'(x_i) = 0 \qquad \text{but} \qquad \overline{\overline{\Psi}} \neq \overline{\Psi}(x_i)
$$

 \blacktriangleright The Filter applied is a spatial filter:

$$
\overline{\Psi}(x_i) = \int_D G(x_i - x'_i) \Psi(x'_i) dx'_i
$$

$$
\overline{\Psi}'(x_i) = 0 \qquad \text{but} \qquad \overline{\overline{\Psi}} \neq \overline{\Psi}(x_i)
$$

 \blacktriangleright Filter applied to the nonlinear advection term:

$$
\overline{u_k u_i} = \overline{(\overline{u_k} + u'_k)(\overline{u_i} + u'_i)} = \overline{\overline{u_k} \,\overline{u_i}} + \underbrace{\overline{\overline{u_k} u'_i} + \overline{u'_k} \overline{\overline{u_i}}}_{C_{ki}} + \underbrace{\overline{u'_k} u'_i}_{R_{ki}}
$$

Hannover

 100

 \blacktriangleright The Filter applied is a spatial filter:

$$
\overline{\Psi}(x_i) = \int_D G(x_i - x'_i) \Psi(x'_i) dx'_i
$$

$$
\overline{\Psi}'(x_i) = 0 \qquad \text{but} \qquad \overline{\overline{\Psi}} \neq \overline{\Psi}(x_i)
$$

 \blacktriangleright Filter applied to the nonlinear advection term:

$$
\overline{u_k u_i} = \overline{(\overline{u_k} + u'_k)(\overline{u_i} + u'_i)} = \overline{\overline{u_k} \,\overline{u_i}} + \underbrace{\overline{\overline{u_k} u'_i} + \overline{u'_k} \overline{\overline{u_i}}}_{C_{ki}} + \underbrace{\overline{u'_k} u'_i}_{R_{ki}}
$$

- R_{ki} : Reynolds-stress
- C_{ki} : cross-stress
- Lki: Leonard-stress
- τ_{ki} : total stress-tensor
	- generalized Reynolds stress

[Basic equations](#page-1-0) [Scale Separation](#page-19-0) [Filtered equations](#page-31-0) Scale Separation Filtered equations of F [Scale Separation by Spatial Filtering](#page-26-0)

LES - Scale Separation by Spatial Filtering (II)

 \blacktriangleright The Filter applied is a spatial filter:

$$
\overline{\Psi}(x_i) = \int_D G(x_i - x'_i) \Psi(x'_i) dx'_i
$$

$$
\overline{\Psi}'(x_i) = 0 \qquad \text{but} \qquad \overline{\overline{\Psi}} \neq \overline{\Psi}(x_i)
$$

Ensemble average:
\n
$$
\overline{\overline{\Psi}}(x_i) = \overline{\Psi}(x_i)
$$
\n
$$
\overline{u_k u_i} = \overline{u_k} \overline{u_i} + \overline{u'_k u'_i}
$$

Filter applied to the nonlinear advection term:

$$
\overline{u_k u_i} = \overline{(\overline{u_k} + u'_k)(\overline{u_i} + u'_i)} = \overline{\overline{u_k} \,\overline{u_i}} + \underbrace{\overline{\overline{u_k} u'_i} + \overline{u'_k} \overline{\overline{u_i}}}_{C_{ki}} + \underbrace{\overline{u'_k} u'_i}_{R_{ki}}
$$

- R_{ki} : Reynolds-stress
- C_{ki} : cross-stress
- Lki: Leonard-stress
- τ_{ki} : total stress-tensor
	- generalized Reynolds stress

 100

eibniz Universität

[Basic equations](#page-1-0) [Scale Separation](#page-19-0) [Filtered equations](#page-31-0) Scale Separation Filtered equations of F [Scale Separation by Spatial Filtering](#page-27-0)

LES - Scale Separation by Spatial Filtering (II)

 \blacktriangleright The Filter applied is a spatial filter:

$$
\overline{\Psi}(x_i) = \int_D G(x_i - x'_i) \Psi(x'_i) dx'_i
$$

$$
\overline{\Psi}'(x_i) = 0 \qquad \text{but} \qquad \overline{\overline{\Psi}} \neq \overline{\Psi}(x_i)
$$

Ensemble average:
\n
$$
\overline{\overline{\Psi}}(x_i) = \overline{\Psi}(x_i)
$$
\n
$$
\overline{u_k u_i} = \overline{u_k} \overline{u_i} + \overline{u'_k u'_i}
$$

Filter applied to the nonlinear advection term:

$$
\overline{u_k u_i} = \overline{(\overline{u_k} + u'_k)(\overline{u_i} + u'_i)} = \overline{\overline{u_k} \,\overline{u_i}} + \underbrace{\overline{\overline{u_k} u'_i} + \overline{u'_k} \overline{\overline{u_i}}}_{C_{ki}} + \underbrace{\overline{u'_k} u'_i}_{R_{ki}}
$$

Leonard proposes a further decomposition:

$$
\overline{\overline{u_k}\,\overline{u_i}} = \overline{u_k}\,\overline{u_i} + \underbrace{(\overline{\overline{u_k}\,\overline{u_i}} - \overline{u_k}\,\overline{u_i})}_{L_{ki}}
$$

$$
\overline{u_k}\,\overline{u_i}=\overline{u_k}\,\overline{u_i}+\underbrace{(\overline{u_k}\,\overline{u_i}-\overline{u_k}\,\overline{u_i})}_{L_{ki}}
$$

$$
\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{
$$

 $\overline{u_k u_i} = \overline{u_k} \,\overline{u_i} + L_{ki} + C_{ki} + R_{ki} = \overline{u_k} \,\overline{u_i} + \tau_{ki}$

- R_{ki} : Reynolds-stress
- C_{ki} : cross-stress
- Lki: Leonard-stress
- τ_{ki} : total stress-tensor

generalized Reynolds stress

[Basic equations](#page-1-0) [Scale Separation](#page-19-0) [Filtered equations](#page-31-0) Scale Separation Filtered equations of F

LES - Scale Separation by Spatial Filtering (III)

Ensemble average:
\n
$$
\overline{\overline{\Psi}}(x_i) = \overline{\Psi}(x_i)
$$
\n
$$
\overline{u_k u_i} = \overline{u_k} \overline{u_i} + \overline{u'_k u'_i}
$$

▶ Volume-balance approach (Schumann, 1975) advantage: numerical discretization acts as a Reynolds operator

$$
\Psi(V, t) = \frac{1}{\Delta x \cdot \Delta y \cdot \Delta z} = \int \int \int_{V} \Psi(V', t) dV' \qquad \frac{\overline{u_k u_i} = \overline{u_k} \overline{u_i}}{\overline{\Psi}(x_i) = 0} \nV = \left[x - \frac{\Delta x}{2}, x + \frac{\Delta x}{2} \right] \times \left[y - \frac{\Delta y}{2}, y + \frac{\Delta y}{2} \right] \times \left[z - \frac{\Delta z}{2}, z + \frac{\Delta z}{2} \right]
$$

Ensemble average:
\n
$$
\overline{\overline{\Psi}}(x_i) = \overline{\Psi}(x_i)
$$
\n
$$
\overline{u_k u_i} = \overline{u_k} \overline{u_i} + \overline{u'_k u'_i}
$$

2 1

eihniz

Hannover

 100

▶ Volume-balance approach (Schumann, 1975) advantage: numerical discretization acts as a Reynolds operator

$$
\Psi(V, t) = \frac{1}{\Delta x \cdot \Delta y \cdot \Delta z} = \int \int \int_{V} \Psi(V', t) dV' \qquad \frac{|\overline{u_k u_i} = \overline{u_k} \overline{u_i} + \overline{u'_k} u'_i}{\overline{\Psi'}(x_i) = 0} \nV = \left[x - \frac{\Delta x}{2}, x + \frac{\Delta x}{2}\right] \times \left[y - \frac{\Delta y}{2}, y + \frac{\Delta y}{2}\right] \times \left[z - \frac{\Delta z}{2}, z + \frac{\Delta z}{2}\right]
$$

$$
\blacktriangleright
$$
 Filter applied to the nonlinear advection term:

$$
\overline{u_k u_i} = \overline{(\overline{u_k} + u'_k)(\overline{u_i} + u'_i)} = \overline{u_k} \,\overline{u_i} + \overline{u'_k u'_i}
$$

∆z 2 1

Ensemble average: $\overline{\overline{\Psi}}(x_i) = \overline{\Psi}(x_i)$

$$
\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial \overline{u_k} \, \overline{u_i}}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial \overline{p}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u_k}_g + g \frac{\overline{T} - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}}{\partial x_k}
$$

$$
\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial \overline{u_k} \overline{u_i}}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial \overline{p}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u_k}_g + g \frac{\overline{T} - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}}{\partial x_k}
$$

 \blacktriangleright The previous derivation completely ignores the existance of the computational grid.

$$
\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial \overline{u_k} \overline{u_i}}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial \overline{p}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u_k}_g + g \frac{\overline{T} - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}}{\partial x_k}
$$

 \blacktriangleright The previous derivation completely ignores the existance of the computational grid.

► The computational grid introduces another space scale: the discretization step Δx_i .

$$
\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial \overline{u_k} \overline{u_i}}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial \overline{p}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u_k}_g + g \frac{\overline{T} - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}}{\partial x_k}
$$

- The previous derivation completely ignores the existance of the computational grid.
- ► The computational grid introduces another space scale: the discretization step Δx_i .
- \triangleright Δx_i has to be small enough to be able to apply the filtering process correctly: $\Delta x_i \leq \Delta$

$$
\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial \overline{u_k} \overline{u_i}}{\partial x_k} = -\frac{1}{\rho_0} \frac{\partial \overline{p}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u_k}_g + g \frac{\overline{T} - T_0}{T_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}}{\partial x_k}
$$

- The previous derivation completely ignores the existance of the computational grid.
- The computational grid introduces another space scale: the discretization step Δx_i .
- \triangleright Δx_i has to be small enough to be able to apply the filtering process correctly: $\Delta x_i \leq \Delta$
- \blacktriangleright Two possibilities:
	- 1. Pre-filtering technique (∆x < ∆, explicit filtering) 2. Linking the analytical filter to the computational grid $(\Delta x = \Delta$, implicit filtering)

- \blacktriangleright Explicit filtering:
	- \triangleright Requires that the analytical filter is applied explicitly.

- \blacktriangleright Explicit filtering:
	- \triangleright Requires that the analytical filter is applied explicitly.
	- \triangleright Rarely used in practice, due to additional computational costs.

- \blacktriangleright Explicit filtering:
	- \triangleright Requires that the analytical filter is applied explicitly.
	- \triangleright Rarely used in practice, due to additional computational costs.
- \blacktriangleright Implicit filtering:
	- \triangleright The analytical cutoff length is associated with the grid spacing.

- \blacktriangleright Explicit filtering:
	- \triangleright Requires that the analytical filter is applied explicitly.
	- \triangleright Rarely used in practice, due to additional computational costs.
- \blacktriangleright Implicit filtering:
	- \triangleright The analytical cutoff length is associated with the grid spacing.
	- \triangleright This method does not require the use of an analytical filter.

- \blacktriangleright Explicit filtering:
	- \triangleright Requires that the analytical filter is applied explicitly.
	- \triangleright Rarely used in practice, due to additional computational costs.
- \blacktriangleright Implicit filtering:
	- \triangleright The analytical cutoff length is associated with the grid spacing.
	- \triangleright This method does not require the use of an analytical filter.
	- \blacktriangleright The filter characteristic cannot really be controlled.

 \blacktriangleright Explicit filtering:

[The Filtered Equations](#page-43-0)

- \triangleright Requires that the analytical filter is applied explicitly.
- \triangleright Rarely used in practice, due to additional computational costs.
- \blacktriangleright Implicit filtering:
	- \triangleright The analytical cutoff length is associated with the grid spacing.
	- \triangleright This method does not require the use of an analytical filter.
	- \blacktriangleright The filter characteristic cannot really be controlled.
	- \triangleright Because of its simplicity, this method is used by nearly all LES models.

- \blacktriangleright Explicit filtering:
	- \triangleright Requires that the analytical filter is applied explicitly.
	- \triangleright Rarely used in practice, due to additional computational costs.
- \blacktriangleright Implicit filtering:
	- \triangleright The analytical cutoff length is associated with the grid spacing.
	- \triangleright This method does not require the use of an analytical filter.
	- \blacktriangleright The filter characteristic cannot really be controlled.
	- \triangleright Because of its simplicity, this method is used by nearly all LES models.

Literature:

[The Filtered Equations](#page-44-0)

Sagaut, P., 2001: Large eddy simulation for incompressible flows: An introduction. Springer Verlag, Berlin/Heidelberg/New York, 319 pp.

Schumann, U., 1975: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comp. Phys., 18, 376-404.

\blacktriangleright Navier-Stokes equations:

$$
\frac{\partial \overline{u_i}}{\partial t} = -\frac{\partial \overline{u_k} \overline{u_i}}{\partial x_k} - \frac{1}{\rho_0} \frac{\partial \overline{\pi}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u_k}_g + g \frac{\overline{\theta} - \theta_0}{\theta_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}'}{\partial x_k}
$$

\blacktriangleright Navier-Stokes equations:

$$
\frac{\partial \overline{u_i}}{\partial t} = -\frac{\partial \overline{u_k} \, \overline{u_i}}{\partial x_k} - \frac{1}{\rho_0} \frac{\partial \overline{\pi}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u_k}_g + g \frac{\overline{\theta} - \theta_0}{\theta_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}'}{\partial x_k}
$$

normal stresses included in the stress tensor are now included in a modified dynamic pressure:

$$
\tau_{ki}^r = \tau_{ki} - \frac{1}{3}\tau_{jj}\delta_{ki}
$$

$$
\overline{\pi}^* = \overline{p}^* + \frac{1}{3}\tau_{jj}\delta_{ki}
$$

 \blacktriangleright Navier-Stokes equations:

∂uⁱ $\frac{\partial \overline{u_i}}{\partial t} = - \frac{\partial \overline{u_k} \, \overline{u_i}}{\partial x_k}$ $\frac{\partial \overline{u_k} \, \overline{u_i}}{\partial x_k} - \frac{1}{\rho_0}$ ρ_0 $\partial \overline{\pi}^*$ $\frac{\partial \overline{\pi}^*}{\partial x_i}-\varepsilon_{ijk}f_j\overline{u_k}+\varepsilon_{i3k}f_3\overline{u}_{k_\mathrm{g}}+g\frac{\theta-\theta_0}{\theta_0}$ $\frac{\partial-\theta_{0}}{\partial_{0}}\delta_{i3}+\nu\frac{\partial^{2}\overline{u_{i}}}{\partial x_{k}^{2}}$ ∂ x_k^2 $-\frac{\partial \tau_{ki}^r}{\partial x_k}$

 \blacktriangleright First principle (using potential temperature):

$$
\frac{\partial \overline{\theta}}{\partial t} = -\frac{\partial \overline{u_k} \overline{\theta}}{\partial x_k} - \frac{\partial H_k}{\partial x_k} + Q_\theta
$$

normal stresses included in the stress tensor are now included in a modified dynamic pressure:

$$
\tau_{ki}^r = \tau_{ki} - \frac{1}{3}\tau_{jj}\delta_{ki}
$$

$$
\overline{\pi}^* = \overline{p}^* + \frac{1}{3}\tau_{jj}\delta_{ki}
$$

 \blacktriangleright Navier-Stokes equations:

∂uⁱ $\frac{\partial \overline{u_i}}{\partial t} = - \frac{\partial \overline{u_k} \, \overline{u_i}}{\partial x_k}$ $\frac{\partial \overline{u_k} \, \overline{u_i}}{\partial x_k} - \frac{1}{\rho_0}$ ρ_0 $\partial \overline{\pi}^*$ $\frac{\partial \overline{\pi}^*}{\partial x_i}-\varepsilon_{ijk}f_j\overline{u_k}+\varepsilon_{i3k}f_3\overline{u}_{k_\mathrm{g}}+g\frac{\theta-\theta_0}{\theta_0}$ $\frac{\partial-\theta_{0}}{\partial_{0}}\delta_{i3}+\nu\frac{\partial^{2}\overline{u_{i}}}{\partial x_{k}^{2}}$ ∂ x_k^2 $-\frac{\partial \tau_{ki}^r}{\partial x_k}$

 \blacktriangleright First principle (using potential temperature):

$$
\frac{\partial \overline{\theta}}{\partial t} = -\frac{\partial \overline{u_k} \overline{\theta}}{\partial x_k} - \frac{\partial H_k}{\partial x_k} + Q_\theta
$$

Equation for specific humidity (passive scalar)

$$
\frac{\partial \overline{q}}{\partial t} = -\frac{\partial \overline{u_k} \overline{q}}{\partial x_k} - \frac{\partial W_k}{\partial x_k} + Q_w
$$

normal stresses included in the stress tensor are now included in a modified dynamic pressure:

$$
\tau_{ki}^r = \tau_{ki} - \frac{1}{3}\tau_{jj}\delta_{ki}
$$

$$
\overline{\pi}^* = \overline{p}^* + \frac{1}{3}\tau_{jj}\delta_{ki}
$$

The Final Set of Equations (PALM)

 \blacktriangleright Navier-Stokes equations:

∂uⁱ $\frac{\partial \overline{u_i}}{\partial t} = - \frac{\partial \overline{u_k} \, \overline{u_i}}{\partial x_k}$ $\frac{\partial \overline{u_k} \, \overline{u_i}}{\partial x_k} - \frac{1}{\rho_0}$ ρ_0 $\partial \overline{\pi}^*$ $\frac{\partial \overline{\pi}^*}{\partial x_i}-\varepsilon_{ijk}f_j\overline{u_k}+\varepsilon_{i3k}f_3\overline{u}_{k_\mathrm{g}}+g\frac{\theta-\theta_0}{\theta_0}$ $\frac{\partial-\theta_{0}}{\partial_{0}}\delta_{i3}+\nu\frac{\partial^{2}\overline{u_{i}}}{\partial x_{k}^{2}}$ ∂ x_k^2 $-\frac{\partial \tau_{ki}^r}{\partial x_k}$

 \blacktriangleright First principle (using potential temperature):

$$
\frac{\partial \overline{\theta}}{\partial t} = -\frac{\partial \overline{u_k} \overline{\theta}}{\partial x_k} - \frac{\partial H_k}{\partial x_k} + Q_\theta
$$

Equation for specific humidity (passive scalar)

$$
\frac{\partial \overline{q}}{\partial t} = -\frac{\partial \overline{u_k} \overline{q}}{\partial x_k} - \frac{\partial W_k}{\partial x_k} + Q_w
$$

Continuity equation

$$
\frac{\partial \overline{u_k}}{\partial x_k}=0
$$

normal stresses included in the stress tensor are now included in a modified dynamic pressure:

$$
\tau_{ki}^r = \tau_{ki} - \frac{1}{3}\tau_{jj}\delta_{ki}
$$

$$
\overline{\pi}^* = \overline{p}^* + \frac{1}{3}\tau_{jj}\delta_{ki}
$$

eihniz **Ilnivercität** Hannover

The Final Set of Equations (PALM)

 \blacktriangleright Navier-Stokes equations:

$$
\frac{\partial \overline{u_i}}{\partial t} = -\frac{\partial \overline{u_k} \overline{u_i}}{\partial x_k} - \frac{1}{\rho_0} \frac{\partial \overline{\pi}^*}{\partial x_i} - \varepsilon_{ijk} f_j \overline{u_k} + \varepsilon_{i3k} f_3 \overline{u_k}_g + g \frac{\overline{\theta} - \theta_0}{\theta_0} \delta_{i3} + \nu \frac{\partial^2 \overline{u_i}}{\partial x_k^2} - \frac{\partial \tau_{ki}'}{\partial x_k}
$$

 \blacktriangleright First principle (using potential temperature):

$$
\frac{\partial \overline{\theta}}{\partial t} = -\frac{\partial \overline{u_k} \overline{\theta}}{\partial x_k} - \frac{\partial H_k}{\partial x_k} + Q_\theta
$$

Equation for specific humidity (passive scalar)

$$
\frac{\partial \overline{q}}{\partial t} = -\frac{\partial \overline{u_k} \overline{q}}{\partial x_k} - \frac{\partial W_k}{\partial x_k} + Q_w
$$

 \blacktriangleright Continuity equation

$$
\frac{\partial \overline{u_k}}{\partial x_k}=0
$$

normal stresses included in the stress tensor are now included in a modified dynamic pressure:

$$
\tau_{ki}^r = \tau_{ki} - \frac{1}{3}\tau_{jj}\delta_{ki}
$$

$$
\overline{\pi}^* = \overline{p}^* + \frac{1}{3}\tau_{jj}\delta_{ki}
$$

l eihniz Universität

Hannover

 100