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Basic equations, Unfiltered

Basic equations, Unfiltered

I Navier-Stokes equations
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Basic equations, Unfiltered

Boussinesq Approximation

I Splitting thermodynamic variables into a basic state ψ0 and a variation ψ∗

T (x , y , z , t) = T0(x , y , z) +T ∗(x , y , z , t)

p(x , y , z , t) = p0(x , y , z) +p∗(x , y , z , t)

ρ(x , y , z , t) = ρ0(z) +ρ∗(x , y , z , t); ψ∗ << ψ0

I Hydrostatic equilibrium, geostrophic wind (not included in Boussinesq)
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I Equation of state
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p
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Basic equations, Unfiltered

Continuity Equation

∂ρ0(z)

∂t
= −∂ρ0(z)uk

∂xk

∂ρ0uk
∂xk

= 0 anelastic approximation

ρ0 = const.
∂uk
∂xk

= 0 incompressible flow
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Basic equations, Unfiltered

Boussinesq Approximated Equations

I Navier-Stokes equations
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I First principle
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I Equation for passive scalar
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I Continuity equation
∂uk
∂xk

= 0

This set of equations
is valid for almost all
kind of CFD models!
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Basic equations Scale Separation Filtered equations

Scale Separation by Spatial Filtering

LES - Scale Separation by Spatial Filtering (I)
I LES technique is based on scale separation, in order to reduce the number of

degrees of freedom of the solution. Ψ(xi , t) = Ψ(xi , t) + Ψ′(xi , t)

I Large / low-frequency modes Ψ are calculated directly (resolved scales).

I Small / high-frequency modes Ψ′ are parameterized using a statistical model
(subgrid / subfilter scales, SGS model).

I These two categories of scales are seperated by defining a cutoff length ∆.
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Scale Separation by Spatial Filtering

LES - Scale Separation by Spatial Filtering (II)

I The Filter applied is a spatial filter:

Ψ(xi ) =

∫
D

G(xi − x ′i )Ψ(x ′i )dx ′i

Ψ
′
(xi ) = 0 but Ψ 6= Ψ(xi )

I Filter applied to the nonlinear advection term:

ukui = (uk + u′k)(ui + u′i ) = uk ui + uku′i + u′kui︸ ︷︷ ︸
Cki

+ u′ku
′
i︸︷︷︸

Rki

I Leonard proposes a further decomposition:

uk ui = uk ui +
(
uk ui − uk ui

)︸ ︷︷ ︸
Lki

ukui = uk ui + Lki + Cki + Rki = uk ui + τki

Rki : Reynolds-stress
Cki : cross-stress
Lki : Leonard-stress
τki : total stress-tensor

generalized Reynolds stress

Ensemble average:

Ψ(xi ) = Ψ(xi )

ukui = uk ui + u′ku
′
i
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Basic equations Scale Separation Filtered equations

Scale Separation by Spatial Filtering

LES - Scale Separation by Spatial Filtering (III)

I Volume-balance approach (Schumann, 1975)
advantage: numerical discretization acts as a
Reynolds operator

Ψ(V , t) =
1

∆x · ∆y · ∆z
=

∫ ∫ ∫
V

Ψ(V ′, t)dV ′

Ψ′(xi ) = 0 and Ψ = Ψ

V =

[
x − ∆x

2
, x +

∆x

2

]
×
[
y − ∆y

2
, y +

∆y

2

]
×
[
z − ∆z

2
, z +

∆z

2

]
I Filter applied to the nonlinear advection term:

ukui = (uk + u′k)(ui + u′i ) = uk ui + u′ku
′
i

Ensemble average:

Ψ(xi ) = Ψ(xi )
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′
i
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LES - Scale Separation by Spatial Filtering (III)

I Volume-balance approach (Schumann, 1975)
advantage: numerical discretization acts as a
Reynolds operator

Ψ(V , t) =
1

∆x · ∆y · ∆z
=

∫ ∫ ∫
V

Ψ(V ′, t)dV ′

Ψ′(xi ) = 0 and Ψ = Ψ

V =

[
x − ∆x

2
, x +

∆x

2

]
×
[
y − ∆y

2
, y +

∆y

2

]
×
[
z − ∆z

2
, z +

∆z

2

]
I Filter applied to the nonlinear advection term:

ukui = (uk + u′k)(ui + u′i ) = uk ui + u′ku
′
i

Ensemble average:

Ψ(xi ) = Ψ(xi )

ukui = uk ui + u′ku
′
i

PALM group PALM Seminar 8 / 11



Basic equations Scale Separation Filtered equations

The Filtered Equations

The Filtered Equations

∂ui
∂t

+
∂uk ui
∂xk

= − 1

ρ0

∂p∗

∂xi
−εijk fjuk +εi3k f3ukg +g

T − T0

T0
δi3 +ν

∂2ui
∂x2

k

− ∂τki
∂xk

I The previous derivation completely ignores the existance of the computational grid.

I The computational grid introduces another space scale: the discretization step ∆xi .

I ∆xi has to be small enough to be able to apply the filtering process correctly:
∆xi ≤ ∆

I Two possibilities:
1. Pre-filtering technique
(∆x < ∆, explicit filtering)
2. Linking the analytical filter
to the computational grid
(∆x = ∆, implicit filtering)
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The Filtered Equations

Explicit Versus Implicit Filtering

I Explicit filtering:

I Requires that the analytical filter is applied explicitly.
I Rarely used in practice, due to additional computational costs.

I Implicit filtering:

I The analytical cutoff length is associated with the grid spacing.
I This method does not require the use of an analytical filter.
I The filter characteristic cannot really be controlled.
I Because of its simplicity, this method is used by nearly all LES models.

Literature:
Sagaut, P., 2001: Large eddy simulation for incompressible flows: An introduction. Springer
Verlag, Berlin/Heidelberg/New York, 319 pp.
Schumann, U., 1975: Subgrid scale model for finite difference simulations of turbulent flows in
plane channels and annuli. J. Comp. Phys., 18, 376-404.
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The Filtered Equations

The Final Set of Equations (PALM)

I Navier-Stokes equations:

∂ui
∂t

= −∂uk ui
∂xk

− 1

ρ0

∂π∗

∂xi
− εijk fjuk + εi3k f3ukg + g

θ − θ0

θ0
δi3 + ν

∂2ui
∂x2

k

− ∂τ rki
∂xk

I First principle (using potential
temperature):

∂θ

∂t
= −∂uk θ

∂xk
− ∂Hk

∂xk
+ Qθ

I Equation for specific humidity
(passive scalar)

∂q

∂t
= −∂uk q

∂xk
− ∂Wk

∂xk
+ Qw

I Continuity equation

∂uk
∂xk

= 0

normal stresses included in the stress ten-
sor are now included in a modified dynamic
pressure:

τ rki = τki − 1
3τjjδki

π∗ = p∗ + 1
3τjjδki

subgrid-scale stresses (fluxes) to be parameter-
ized in the SGS model:

τki = ukui − uk ui
Hk = ukθ − uk θ
Wk = ukq − uk q

PALM group PALM Seminar 11 / 11



Basic equations Scale Separation Filtered equations

The Filtered Equations

The Final Set of Equations (PALM)
I Navier-Stokes equations:

∂ui
∂t

= −∂uk ui
∂xk

− 1

ρ0

∂π∗

∂xi
− εijk fjuk + εi3k f3ukg + g

θ − θ0

θ0
δi3 + ν

∂2ui
∂x2

k

− ∂τ rki
∂xk

I First principle (using potential
temperature):

∂θ

∂t
= −∂uk θ

∂xk
− ∂Hk

∂xk
+ Qθ

I Equation for specific humidity
(passive scalar)

∂q

∂t
= −∂uk q

∂xk
− ∂Wk

∂xk
+ Qw

I Continuity equation

∂uk
∂xk

= 0

normal stresses included in the stress ten-
sor are now included in a modified dynamic
pressure:

τ rki = τki − 1
3τjjδki

π∗ = p∗ + 1
3τjjδki

subgrid-scale stresses (fluxes) to be parameter-
ized in the SGS model:

τki = ukui − uk ui
Hk = ukθ − uk θ
Wk = ukq − uk q

PALM group PALM Seminar 11 / 11



Basic equations Scale Separation Filtered equations

The Filtered Equations

The Final Set of Equations (PALM)
I Navier-Stokes equations:

∂ui
∂t

= −∂uk ui
∂xk

− 1

ρ0

∂π∗

∂xi
− εijk fjuk + εi3k f3ukg + g

θ − θ0

θ0
δi3 + ν

∂2ui
∂x2

k

− ∂τ rki
∂xk

I First principle (using potential
temperature):

∂θ

∂t
= −∂uk θ

∂xk
− ∂Hk

∂xk
+ Qθ

I Equation for specific humidity
(passive scalar)

∂q

∂t
= −∂uk q

∂xk
− ∂Wk

∂xk
+ Qw

I Continuity equation

∂uk
∂xk

= 0

normal stresses included in the stress ten-
sor are now included in a modified dynamic
pressure:

τ rki = τki − 1
3τjjδki

π∗ = p∗ + 1
3τjjδki

subgrid-scale stresses (fluxes) to be parameter-
ized in the SGS model:

τki = ukui − uk ui
Hk = ukθ − uk θ
Wk = ukq − uk q

PALM group PALM Seminar 11 / 11



Basic equations Scale Separation Filtered equations

The Filtered Equations

The Final Set of Equations (PALM)
I Navier-Stokes equations:

∂ui
∂t

= −∂uk ui
∂xk

− 1

ρ0

∂π∗

∂xi
− εijk fjuk + εi3k f3ukg + g

θ − θ0

θ0
δi3 + ν

∂2ui
∂x2

k

− ∂τ rki
∂xk

I First principle (using potential
temperature):

∂θ

∂t
= −∂uk θ

∂xk
− ∂Hk

∂xk
+ Qθ

I Equation for specific humidity
(passive scalar)

∂q

∂t
= −∂uk q

∂xk
− ∂Wk

∂xk
+ Qw

I Continuity equation

∂uk
∂xk

= 0

normal stresses included in the stress ten-
sor are now included in a modified dynamic
pressure:

τ rki = τki − 1
3τjjδki

π∗ = p∗ + 1
3τjjδki

subgrid-scale stresses (fluxes) to be parameter-
ized in the SGS model:

τki = ukui − uk ui
Hk = ukθ − uk θ
Wk = ukq − uk q

PALM group PALM Seminar 11 / 11



Basic equations Scale Separation Filtered equations

The Filtered Equations

The Final Set of Equations (PALM)
I Navier-Stokes equations:

∂ui
∂t

= −∂uk ui
∂xk

− 1

ρ0

∂π∗

∂xi
− εijk fjuk + εi3k f3ukg + g

θ − θ0

θ0
δi3 + ν

∂2ui
∂x2

k

− ∂τ rki
∂xk

I First principle (using potential
temperature):

∂θ

∂t
= −∂uk θ

∂xk
− ∂Hk

∂xk
+ Qθ

I Equation for specific humidity
(passive scalar)

∂q

∂t
= −∂uk q

∂xk
− ∂Wk

∂xk
+ Qw

I Continuity equation

∂uk
∂xk

= 0

normal stresses included in the stress ten-
sor are now included in a modified dynamic
pressure:

τ rki = τki − 1
3τjjδki

π∗ = p∗ + 1
3τjjδki

subgrid-scale stresses (fluxes) to be parameter-
ized in the SGS model:

τki = ukui − uk ui
Hk = ukθ − uk θ
Wk = ukq − uk q

PALM group PALM Seminar 11 / 11



Basic equations Scale Separation Filtered equations

The Filtered Equations

The Final Set of Equations (PALM)
I Navier-Stokes equations:

∂ui
∂t

= −∂uk ui
∂xk

− 1

ρ0

∂π∗

∂xi
− εijk fjuk + εi3k f3ukg + g

θ − θ0

θ0
δi3 + ν

∂2ui
∂x2

k

− ∂τ rki
∂xk

I First principle (using potential
temperature):

∂θ

∂t
= −∂uk θ

∂xk
− ∂Hk

∂xk
+ Qθ

I Equation for specific humidity
(passive scalar)

∂q

∂t
= −∂uk q

∂xk
− ∂Wk

∂xk
+ Qw

I Continuity equation

∂uk
∂xk

= 0

normal stresses included in the stress ten-
sor are now included in a modified dynamic
pressure:

τ rki = τki − 1
3τjjδki

π∗ = p∗ + 1
3τjjδki

subgrid-scale stresses (fluxes) to be parameter-
ized in the SGS model:

τki = ukui − uk ui
Hk = ukθ − uk θ
Wk = ukq − uk q

PALM group PALM Seminar 11 / 11



Basic equations Scale Separation Filtered equations

The Filtered Equations

The Final Set of Equations (PALM)
I Navier-Stokes equations:

∂ui
∂t

= −∂uk ui
∂xk

− 1

ρ0

∂π∗

∂xi
− εijk fjuk + εi3k f3ukg + g

θ − θ0

θ0
δi3 + ν

∂2ui
∂x2

k

− ∂τ rki
∂xk

I First principle (using potential
temperature):

∂θ

∂t
= −∂uk θ

∂xk
− ∂Hk

∂xk
+ Qθ

I Equation for specific humidity
(passive scalar)

∂q

∂t
= −∂uk q

∂xk
− ∂Wk

∂xk
+ Qw

I Continuity equation

∂uk
∂xk

= 0

normal stresses included in the stress ten-
sor are now included in a modified dynamic
pressure:

τ rki = τki − 1
3τjjδki

π∗ = p∗ + 1
3τjjδki

subgrid-scale stresses (fluxes) to be parameter-
ized in the SGS model:

τki = ukui − uk ui
Hk = ukθ − uk θ
Wk = ukq − uk q

PALM group PALM Seminar 11 / 11


	Basic equations
	Basic equations, Unfiltered

	Scale Separation
	Scale Separation by Spatial Filtering

	Filtered equations
	The Filtered Equations


