Notes

PALM's Lagrangian Particle Model

Siegfried Raasch

Institut für Meteorologie und Klimatologie, Leibniz Universität Hannover

last update: Montag 21 September, 2015

PALM Seminar

The embedded Lagrangian particle model

The embedded Lagrangian particle model

Overview

- The Lagrangian particle model embedded in PALM can be used for different purposes:
 - Cloud droplet simulation
 - Dispersion modelling / Footprint analysis
 - Visualization
- ▶ Therefore the particles can have different properties, e.g.:
 - Particles can be transported (advected) passively with the resolved-scale flow
 - Particle transport by the subgrid-scale (SGS) turbulence can be included by switching on a stochastic SGS model for the particle transport (parameter: use_sgs_for_particles)
 - Particles can be given a mass and thus an inertia and a radius which affects their flow resistance (parameter: density_ratio, radius)
 - Tails can be added to the particles (showing the particle trajectories) for visualization purpose using the special visualization package dvrp

Leibniz Universität Hannover

1 / 34

Notes

2 / 34

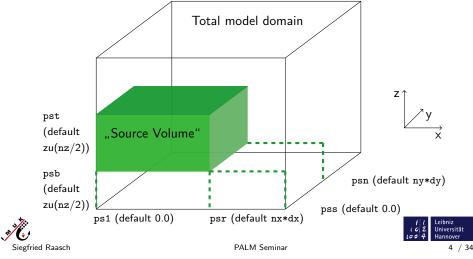
The embedded Lagrangian particle model

Notes

Basics (I)

- The particle model is switched on by adding a &particles_par NAMELIST to the parameter file (PARIN). This NAMELIST has to be added after the &d3par-NAMELIST.
- All parameters for steering the particle model are described in: Documentation → Model steering → Parameters → Particles (http://palm.muk.uni-hannover.de/)
- ► The particle model requires to use a constant vertical grid spacing (due to the implemented scheme for the interpolation of information from the LES grid to particle positions, that is required for the calculation of particle velocities)!

PALM Seminar

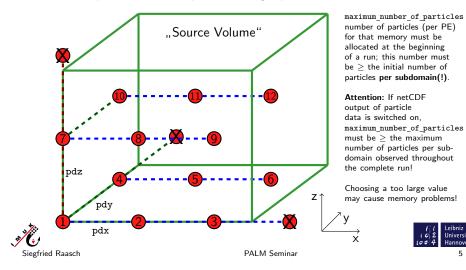

The embedded Lagrangian particle model

The embedded Lagrangian particle model

Basic Particle Parameters (I)

Parameters that define the locations of particle source(s):

Step I: Define the volume of the particle source

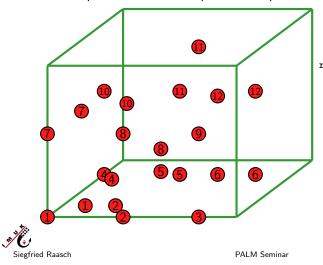

RIN).			
ed in:			
ticles			
al			
ie			
ו of			
<i>l</i> ∦ Leibniz		 	
l Leibniz C 2 J Hinversität Hannover 3 / 34			
	N		
	Notes		
Уу			
×			
ny*dy)			
путау)			
<i>l l</i> Leibniz c 2 Universität			

Notes

Basic Particle Parameters (II)

Parameters that define the locations of particle source(s):

► Step IIa: Define the points of single particle release


The embedded Lagrangian particle model

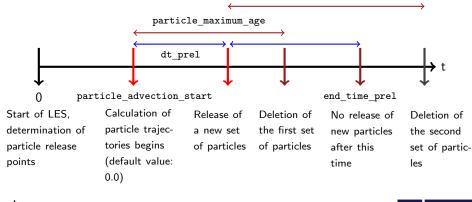
The embedded Lagrangian particle model

Basic Particle Parameters (III)

Parameters that define the locations of particle source(s):

Step IIb: Random start positions of particles

random_start_position = .T.

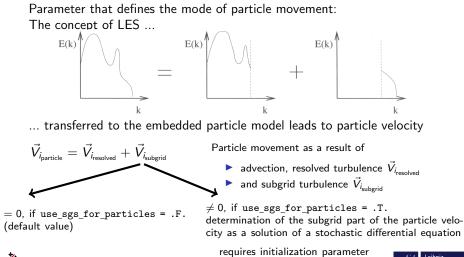

Leibniz Universität

5 / 34

Notes

Basic Particle Parameters (IV)

Parameters that define the period of particle release:


PALM Seminar

The embedded Lagrangian particle model

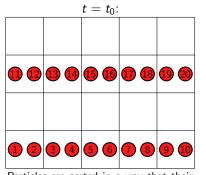
The embedded Lagrangian particle model

Basic Particle Parameters (V)

use upstream for tke = .T.

PALM Seminar

Siegfried Raasch


r I I Leibniz I O 2 Universi I O 7 4 Hannov

Notes

Basic Particle Parameters (VI)

Parameter dt sort particles that improves the performance of a simulation with (many) particles:

Particles are sorted in a way that their order follows the order in which the grid point values are stored (beneficial as the code contains many loops over

Siegfried Raasch

				19
13	2 4	16 3	5 18	
12	7	9	69 420	
		1	8	17
By defa	ult, part	cicles are	e not so	rted

 $t > t_0$:

after every time step, particles with subsequent numbers will need information from quite different LES grid

 $t > t_0$:

points \rightarrow Bad cache utilization PALM Seminar

The embedded Lagrangian particle model

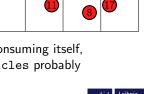
The embedded Lagrangian particle model

Basic Particle Parameters (VI)

Parameter dt sort particles that improves the performance of a simulation with (many) particles:

Higher performance with resorting of particles:

Temporal interval between the sorting of particles determined by the parameter


dt_sort_particles

(default value 0.0, i.e. particles are resorted at every time step)

Keep in mind that resorting of particles is time consuming itself, so that using the default value of dt sort particles probably won't yield the best performance that is possible.

PALM Seminar

Basic Particle Parameters (VI)

Example for the beneficial effect of resorting on the consumption of CPU time (dt_sort_particles = 0.0):

Release of 3.200.000 particles into a convective boundary layer. Extract from CPU time measurement file.

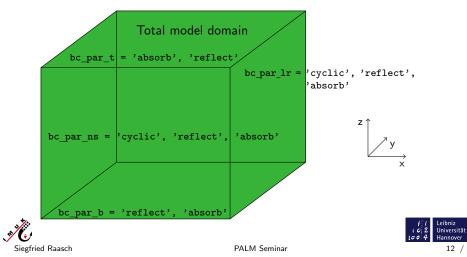
Part of PALM	Consumed	Percentage	Consumed	Percentage	Saved
	CPU ti-	of totally	CPU time	of totally	CPU time
	me in s	consumed	in s with	consumed	with re-
	without	CPU time	resorting	CPU time	sorting in
	resorting	(without)		(with)	%
total	50027.225	100.0	47805.635	100.0	4.4
advec_particles	22049.711	44.08	19926.364	41.68	9.6
advec_particles_advec	13640.729	27.27	11424.540	23.90	16.2

PALM Seminar

nnover

12 / 34

The embedded Lagrangian particle model


Siegfried Raasch

The embedded Lagrangian particle model

Basic Particle Parameters (VII)

Parameters that define the boundary conditions for particles

Notes

Notes

Basic Particle Parameters (VIII)

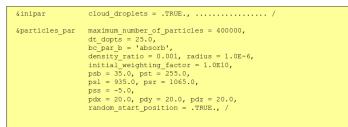
Parameters that steer the output of particle data

- There are two output files containing particle data:
 - DATA_1D_PTS_NETCDF:

contains particle time series, output interval is controlled by parameter dt_dopts, one file for the total domain, e.g. time series of the total number of particles, mean particle velocity, mean subgrid scale part of the particle velocity, mean particle location etc.

► DATA_PRT_NETCDF:

contains **all** particle data (see slide The Data Type Used for Particles), output is controlled by dt_write_particle_data, one file per subdomain/PE



PALM Seminar

The embedded Lagrangian particle model

The embedded Lagrangian particle model

An Example of a Particle NAMELIST

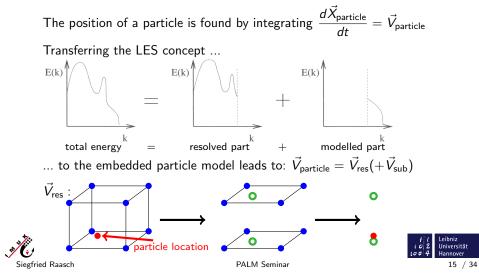
Several (up to 10) so called particle groups with different density ratio, radius, and starting positions can be defined by setting parameter number_of_particle_groups to the required number of groups, and by assigning values for each particle groups to the respective parameters (e.g. density_ratio = 0.001, 0.0, etc.)

PALM Seminar

Leibniz Universität

13 / 34

102



Notes

Notes

Theory of the Lagrangian Particle Model (I)

Advection of Passive particles

The embedded Lagrangian particle model

The embedded Lagrangian particle model

Theory of the Lagrangian Particle Model (II)

A: Passive particles

Calculation of the subgrid part of the particle velocity \vec{V}_{sub} :

- Application of the method of Weil et al. (2004)
- they derived an adaptation of Thomson's model (1987)
- $\frac{dV_{\text{particle}_i}}{dt} = a_i dt + (C_0 \overline{\varepsilon})^{\frac{1}{2}} d\xi_i \quad \text{deterministic} + \text{random velocity forcing}$ to the grid-volume level, i.e.:
- Ensemble-mean velocity replaced by the LES resolved velocity
- Lagrangian stochastic model describes the subgrid scale random velocity fluctuation about the resolved velocity
- The subgrid scale velocities are specified by a Gaussian probability density function based on the subgrid scale stress tensor and its inverse

PALM Seminar

The ensemble mean dissipation rate can be replaced by the local dissipation rate

Theory of the Lagrangian Particle Model (III)

A: Passive particles

Weil's formula for the subgrid part of the particle velocity:

Assumption: subgrid scale turbulence locally isotropic

$$dV_{sub_{i}} = -\frac{3f_{s}C_{0}\varepsilon}{4}\frac{V_{sub_{i}}}{e_{s}}dt + \frac{1}{3}\left(\frac{\partial e_{s}}{\partial x_{i}} + \frac{3}{2e_{s}}\frac{de_{s}}{dt}V_{sub_{i}}\right)dt + \sqrt{f_{s}C_{0}\varepsilon}\,d\xi_{i}$$

$$f_{s} = \frac{\langle 2e_{s}/3 \rangle}{\langle 2e_{s}/3 \rangle + \langle (\sigma_{resU}^{2} + \sigma_{resV}^{2} + \sigma_{resW}^{2})/3 \rangle}$$

Local dissipation rate ε , subgrid scale turbulent kinetic energy e_s and variances of resolved velocity components $\sigma_{{\rm res}_i}$ derived from LES data

PALM Seminar

The embedded Lagrangian particle model

The embedded Lagrangian particle model

Theory of the Lagrangian Particle Model (IV)

A: Passive particles

Particle time step in case of use_sgs_for_particles = .TRUE.:

limited by the Lagrangian time scale T_L $dt = 0.025 T_L$

subsequent particle time steps: velocities correlated, accelerations not correlated

Lagrangian autocorrelation function:

$$R_{L}(\tau) = \frac{W(t)W(t+\tau)}{\sigma_{w}^{2}} = exp\left(-\frac{\tau}{T_{L}}\right)$$

$$T_{L} = 4e_{s}/(3f_{s}C_{0}\varepsilon)$$

Particle time step can be smaller than LES time step!

Leibniz Universität

17 / 34

Notes

Theory of the Lagrangian Particle Model (V)

B: Non-passive particles (e.g. cloud droplets)

ightarrow advection of particles by the non-linear drag law following Clift et al., 1978

$$\begin{aligned} \frac{dV_i}{dt} &= \frac{1}{\tau_p} (u_i - V_i - \delta_{i3} w_s) \to V_i(t) = V_i(0) e^{-\Delta t/\tau_p} + (u_i - w_s \delta_{i3}) \left(1 - e^{-\Delta t/\tau_p} \right) \\ \text{with } \tau_p^{-1} &= \frac{3\pi}{8\beta r} C_D \left| \vec{u} - \vec{V} \right|, \ C_D &= \frac{24}{\text{Re}} \left(1 + 0.15 \text{Re}^{0.687} \right), \ w_s = \frac{\beta - 1}{\beta} g \tau_p, \\ \beta &= \frac{\rho_p}{\rho_f} \end{aligned}$$

 ρ_f

 C_D = drag coefficient

= Reynolds number

= particle velocity

= velocity of the fluid

- = terminal velocity Ws β = density coefficient
- = gravitational acceleration = density of the particle ρ_P
 - = density of the fluid
 - = response time with respect to inertia τ_p

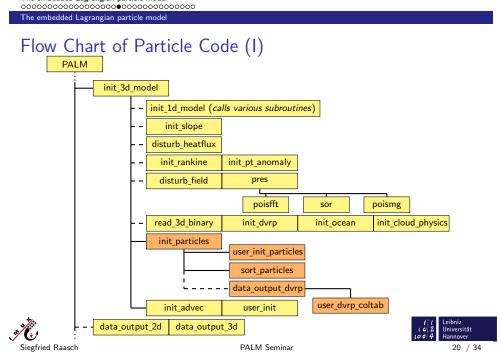
Leibniz Universität

annover

19 / 34

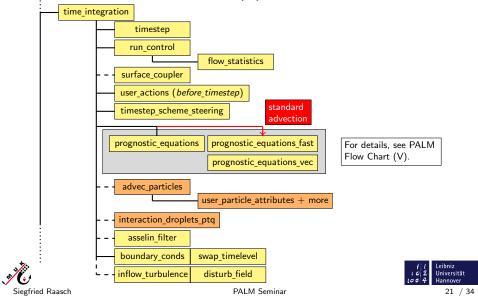
102

g


Re

U_i

 V_i


PALM Seminar

The embedded Lagrangian particle model

Notes

Flow Chart of Particle Code (II)

The embedded Lagrangian particle model

00000000000000000000000000000000000000	N
Detailed Flow Chart of advec_particles (I)	
write particle data on file binary (PARTICLE_DATA/) + NetCDF (DATA_PRT_NETCDF/)	
calculate exponential terms for particles groups with inertia	
particle growth by condensation/evaporation and collision	
If SGS-velocities are used: calculate gradients of TKE	
timestep loop (repeated, unless each particle has reached the LES timestep dt_3d)	
for each particle: - interpolate velocities and SGS quantities (SGS-velocities, Lagrangian timescale, etc. - calculate the particle advection	_
calculate particle reflection from walls (subroutine particle_boundary_conds)	
<pre>user defined actions (subroutine user_advec_particles)</pre>	
if necessary, release a new set of particles	
particle exchange between the subdomains	
boundary conditions at bottom and top	
delete, pack, and sort particles	
Siegfried Raasch PALM Seminar 22 / 34	

Notes

Detailed Flow Chart of advec_particles (II)

In case of cloud droplets: calculate the liquid water content

user defined setting of particle attributes (subroutine user_particle_attributes)

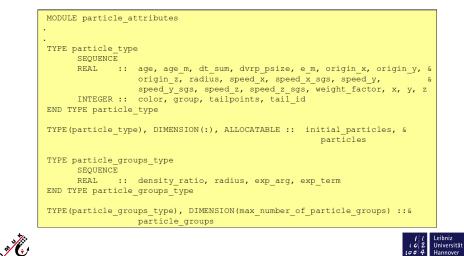
if necessary, add actual positions to the particle tails

write particle statistics on file PARTICLE_INFOS (ASCII format)

For a better modular structure, subroutine advec_particles will be split into several subroutines in one of the next PALM releases.

Siegfried Raasch

PALM Seminar


24 / 34

The embedded Lagrangian particle model

The embedded Lagrangian particle model

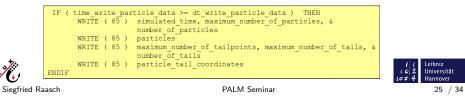
The Data Type Used for Particles

▶ Particle data are stored in a FORTRAN derived data type:

PALM Seminar

How to Read netCDF Particle Data from an External

Program


- An example program for reading netCDF particle data (from file DATA_PRT_NETCDF/) can be found in the PALM repository under/trunk/UTIL/analyze_particle_netcdf_data.f90
- Attention:

The particle feature "density_ratio" is stored in variable particle_groups which (so far) is **not** contained in the netCDF file.

Also, informations about particle tails (history of particle positions) are ${\it not}$ on the netCDF file!

Both informations can only be found on file PARTICLE_DATA/.

For the format of this file (one per PE, i.e. filenames _0000, _0001, etc.) see beginning of subroutine advec_particles.

The embedded Lagrangian particle model

The embedded Lagrangian particle model

Application example: Footprint modelling above a homogeneously heated surface (I)

What is a footprint?

field of view of a micrometeorological measurement

What is the motivation for footprint modelling?

measured turbulent fluxes don't represent the fluxes originating directly from below the measuring device, but rather represent the fluxes originating from an area upwind of the measuring device

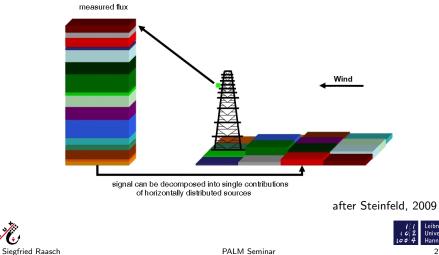
How is it done?

- particle trajectories are calculated in LES using embedded Lagrangian Particle Model
- once a particle intersects with chosen measuring height, footprint relevant data is output
- footprints are calculated in postprocessing

What to keep in mind?

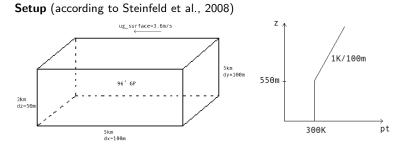
 including subgridscale particle velocities necessary, when calculating footprints close to the surface, where subgridscale contribution

to turbulent kinetic energy is relatively large



Notes

Application example: Footprint modelling above a homogeneously heated surface (II)



The embedded Lagrangian particle model

N N

The embedded Lagrangian particle model

Application example: Footprint modelling above a homogeneously heated surface (III)

> particles are released every 2min over a period of 30min at z=70m in the total model domain (\rightarrow 7 * 10⁶ particles)

PALM Seminar

▶ particles are measured at z=72.5m, 77.5m, 100.0m

Notes

Notes

Application example: Footprint modelling above a homogeneously heated surface (IV)

Extract from the corresponding parameter file:

&inipar	nx = 95, ny = 95, nz = 96,
	dx = 52.0, dy = 52.0, dz = 21.0,
	ug surface = -3.6, vg surface = 0.0,
	surface heatflux = 0.24 ,
	use_upstream_for_tke = .TRUE., /
&d3par	end_time = 18000.0,/
&particles par	particle advection start = 10800.0,
	dt prel = 120.0,
	end time prel = 12600.0,
	maximum number of particles = 1000000,
	particle_maximum_age = 7201.0,
	<pre>bc_par_b = 'reflect',</pre>
	psb = 70.0,
	pst = 70.1,
	pdx = 65.0,
	pdy = 65.0,
	pdz = 1.0,
	particles_per_point = 20,
	dt_dopts = 2.0,
	use_sgs_for_particles = .T.,/
&userpar	footprint evaluation = .T.,
	begin mea = 10800.0,
	end mea = 18000.0,
	mea_height = 72.5, 77.5, 100.0,/

nnover

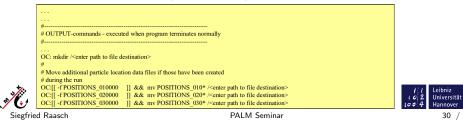
30 / 34

The embedded Lagrangian particle model

The embedded Lagrangian particle model

Siegfried Raasch

Application example: Footprint modelling above a homogeneously heated surface (V)


Additionally required user-defined code (continued):

1. Open files (one per PE and measuring height) for the additional output of footprint relevant particle data in user init

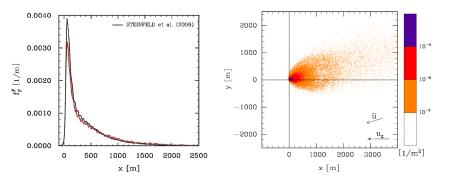
PALM Seminar

2. Create directory into which the files containing the particle data shall be moved to and move the files (in .mrun.config)

Notes

Application example: Footprint modelling above a homogeneously heated surface (VI)

Additionally required user-defined code (continued):


3. Output of footprint relevant data in user_advec_particles (checking if particle has crossed measuring height)

Siegfrie	d Raasch PALM Seminar	V.4	Hannover 31 / 3
N N N N	ENDDO ENDIF	1102	Leibniz Universität
	ENDDO		
	ENDIF $k = k + 1$		
	WRITE(220+kk) xdiff, ydiff, particles(n)%speed_z, xm, ym		
	Ydiri = particles(n)sorigin_y = Ym		
	xdiff = particles(n)%origin_x - xm ydiff = particles(n)%origin_y - ym		
	ym = particles(n)%y - particles(n)%speed_y * inttime		
	<pre>particles(n)%speed_z) xm = particles(n)%x - particles(n)%speed x * inttime</pre>		
	inttime = ABS((particles(n)%z - mea_height(kk)) / &		
	.OR. (z_old < mea_height(kk)) .AND. (particles(n) $z \ge mea_height(kk)$)) THEN		
	DO WHILE (mea_height(k) > 0.0) IF ((z_old > mea_height(kk)) .AND. (particles(n)%z <= mea_height(kk)) &		
	k = 1		
	IF (footprint_evaluation) THEN DO n = 1, number of particles		
	ENDIF		
	ENDDO		
	<pre>DO n = 1, number_of_particles dt particle(n) = particles(n)%age - particles(n)%age m</pre>		
	IF (footprint_evaluation) THEN		

The embedded Lagrangian particle model

The embedded Lagrangian particle model

Application example: Footprint modelling above a homogeneously heated surface (VII)

PALM Seminar

sensor position at x = 0m

31 / 34

Notes

Using Particles as Cloud Droplets

- This feature is switched on by setting the initial parameter cloud_droplets = .TRUE..
- In this case, the change in particle radius by condensation/evaporation and collision is calculated for every timestep.
- In case of condensation or evaporation, the potential temperature and the specific humidity has to be adjusted in the respective grid volumes. This is done within the subroutine interaction_droplets_ptq.

PALM Seminar

The embedded Lagrangian particle model

The embedded Lagrangian particle model

General Warning

Errors in the user interface routines for particles may cause problems which are very difficult to debug. Please be extremely careful with modifying the user interface and try to find out exactly how the default particle code works, before you make your modifications.

PALM Seminar

Leibniz Universität

33 / 34