PALM - Cloud Physics

PALM group

Institute of Meteorology and Climatology, Leibniz Universität Hannover

last update: Monday 21st September, 2015

PALM Seminar

1 / 16

Contents

- Motivation
- Approach
- ► Extension if basic equations and SGS-model
- ► Additional Sources / Sinks in prognostic equations
- ► Control parameters
- ► Example of shallow cumulus clouds

*/	
PALM	group

Why simulating clouds?

- ▶ Atmospheric boundary layers are usually covered with shallow clouds like cumulus or stratocumulus which are the inherent characteristic of more realistic boundary layers.
- Optional feature to account for:
 - Microphysical processes
 - Evaporation / condensation of cloud droplets
 - Precipitation
 - ► Transport of humidity and liquid water
 - Radiation processes
 - Short-wave radiation
 - ► Long-wave radiation

Approach

- ▶ One-moment bulk model ⇒ in contrast to PALM's Lagrangian cloud model (LCM) (see also particle_model_cloud_physics.pdf, Riechelmann et al., 2012)
- ▶ Dynamics like advection and diffusion are covered by Navier-Stokes equations (see basic_equations.pdf)
- ► Thermodynamics are considered by parameterizations ⇒ non explicit treatment of microphysical processes
- ▶ Total water specific humidity q is prognosed as an additional variable ⇒ one-moment
- \triangleright Liquid water specific humidity q_l is determined diagnostically

PALM's basic equations are extended to account for cloud microphysics

Notes			
Notes			

Definitions (I)

▶ Liquid water potential temperature θ_I (defined by Betts, 1973)

$$\theta_I = \theta - \frac{L_v}{c_p} \left(\frac{\theta}{T} \right) q_I$$

 $\it L_{v}$: latent heat of vaporization; $\it L_{v}=2,\!5\cdot 10^6~J/kg$

$$c_p$$
: specific heat of dry air; $c_p=1005\,\mathrm{J/kgK}$

is the potential temperature of an air parcel if all its liquid water evaporates due to an reversible moist adiabatic descent.

► Total water specific humidity q

$$q = q_v + q_I$$

 q_v : specific humidity

 q_l : liquid water speciffic humidity

 \bullet θ_I and q are the prognostic variables when using PALM's cl physics model

PALM Seminar

Notes

Definitions (II)

- ▶ Why using θ_I and q?
 - \bullet θ_I and q are conservative quantities in the absence of precip radiation and freezing processes.
 - ▶ Phase transitions do not have to be described explicitly in the prognostic equations.
 - ▶ In case of dry convection (no condensation): $\theta_I \rightarrow \theta$ and q
 - Parameterizations of SGS-fluxes can be retained.
 - ▶ ...→ see also Deardorff, 1976
- \triangleright Virtual potential temperature θ_I

$$heta_{
m v} = \left[heta_I + rac{L_{
m v}}{c_{
ho}}\left(rac{ heta}{T}
ight)q_I
ight]\left(1+0,61q-1,61q_I
ight)$$

oud	
1' Loihair	
l; l Leibniz Lo; Z Universität Go; 4 Hannover 5 / 16	
	Notes
pitation,	
he	
$ ightarrow q_{ u}$	
l; l Leibniz l c; 2 Universität o o : 4 Hannover	
,	

Extension of basic equations (I)

▶ First principle is solved for θ_I (instead of θ)

$$rac{\partial ar{ heta}_l}{\partial t} = -rac{\partial ar{u}_k ar{ heta}_l}{\partial x_k} - rac{\partial H_k}{\partial x_k} + Q_{ heta}$$
 SGS flux: $H_k = \overline{u_k heta}_l - ar{u}_k ar{ heta}_l$

► Conservation equation for total water specific humidity g (instead of

$$rac{\partial ar{q}}{\partial t} = -rac{\partial ar{u}_k ar{q}}{\partial x_k} - rac{\partial W_k}{\partial x_k} + Q_{ heta}$$
 SGS flux: $W_k = \overline{u_k q} - ar{u}_k ar{q}$

PALM Seminar

Notes

Notes

Extension of basic equations (II)

► Sources / Sinks due to radiation (RAD) and precipitation (PREC)

$$egin{align} Q_{ heta} &= \left(rac{\partial ar{ heta}_I}{\partial t}
ight)_{\mathsf{RAD}} + \left(rac{\partial ar{ heta}_I}{\partial t}
ight)_{\mathsf{PREC}} \ Q_W &= \left(rac{\partial ar{q}}{\partial t}
ight)_{\mathsf{PREC}} \ \end{aligned}$$

▶ Diagnostic approach for \bar{q}_l (all-or-nothing schema)

$$ar{q}_l = egin{cases} ar{q} - ar{q}_s & ext{if } ar{q} > ar{q}_s \ 0 & ext{if otherwise} \end{cases}$$

 \bar{q}_s is the saturation value of the specific humidity which is determined based on Sommeria and Deardorff, 1977 and further described in cloud_physics.pdf

DA 1 8 4	· ·
PALIVI	Semin

Extension of SGS model (I)

▶ SGS fluxes are modelled by means of a down-gradient approximation

$$H_k = -K_h \frac{\partial \bar{\theta}_I}{\partial x_k}$$
 ; $W_k = -K_h \frac{\partial \bar{q}}{\partial x_k}$

SGS flux of potential temperature $\overline{u_3'\theta'}$ in prognostic equation of the SGS-TKE \bar{e} is replaced by the flux of the virtual potential temperature $\overline{u_3'\theta_V'}$ which is modelled according to Deardorff, 1980 as:

$$\overline{u_3'\theta_v'} = K_1 \cdot H_3 + K_2 \cdot W_3$$

PALM Seminar

9 / 16

Extension of SGS model (II)

- ▶ The coefficients K_1 and K_2 depend on the saturation state of the grid volume (see also Cuijpers u. Duynkerke, 1993)
 - Unsaturated grid box $(\bar{q}_I = 0)$

$$K_1 = 1, 0 + 0, 61 \cdot \bar{q}$$

$$K_2 = 0,61 \cdot \bar{\theta}$$

▶ Saturated grid box $(\bar{q}_l \neq 0)$

$$\mathcal{K}_{1} = \frac{1, 0 - \bar{q} + 1, 61 \cdot \bar{q}_{s} \left(1, 0 + 0, 622 \frac{L_{v}}{RT}\right)}{1, 0 + 0, 622 \frac{L_{v}}{RT} \frac{L_{v}}{c_{p}T} \bar{q}_{s}}$$

$$\mathcal{K}_2 = heta \left(rac{L_{ extsf{v}}}{c_{ extsf{p}} au} \cdot \mathcal{K}_1 - 1, 0
ight)$$

Notes	
	_
	_
	_
Notes	
	_

Sources / Sinks (I)

- ▶ Radiation model (based on Cox, 1976) ⇒ scheme of effective emissivity
 - ▶ Very simple, accounts only for absorbtion and emission of long-wave radiation due to water vapour and cloud droplets and neglects horizontal divergences of radiation

$$\left(\frac{\partial \bar{\theta}_I}{\partial t}\right)_{\mathsf{RAD}} = \left(\frac{\theta}{T}\right) \frac{1}{\varrho c_\rho \Delta z} \left[\Delta F(z^+) - \Delta F(z^-)\right]$$

 ΔF : Difference between upward and downward irradiance at grid points above (z^+) and below (z^-) the level which $\bar{\theta}_I$ is defined.

Further information: cloud_physics.pdf

PALM Seminar

Sources / Sinks (II)

- ▶ Precipitation model (based on Kessler, 1969)
 - ► Simplified scheme which accounts only for the process of autoconversion for the formation of rain water.

$$\left(\frac{\partial \bar{q}}{\partial t}\right)_{\mathsf{PREC}} = \begin{cases} (\bar{q}_{\mathit{I}} - \bar{q}_{\mathit{I}_{\mathsf{crit}}})/\tau & \mathsf{if} \ \bar{q}_{\mathit{I}} > \bar{q}_{\mathit{I}_{\mathsf{crit}}} \\ 0 & \mathsf{if} \ \bar{q}_{\mathit{I}} \leq \bar{q}_{\mathit{I}_{\mathsf{crit}}} \end{cases}$$

- precipitation leaves grid box immediately if the threshold $\bar{q}_{I_{\rm crit}} = 0.5\,{\rm g/kg}$ is exceeded.
- ▶ Timescale $\tau = 1000 \, \text{s}$.

$$\left(\frac{\partial \bar{\theta}_{l}}{\partial t}\right)_{\mathsf{PREC}} = \frac{L_{\mathsf{v}}}{c_{\mathsf{p}}} \left(\frac{\theta}{T}\right) \left(\frac{\partial \bar{q}}{\partial t}\right)_{\mathsf{PREC}}$$

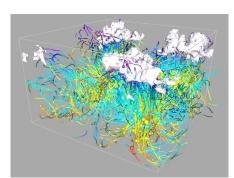
in		
11 Leibniz		
l l Leibniz 102 Universität 1004 Hannover		
11 / 16		
	Notes	
		_
	-	
I l Leibniz		
i o 2 Universität		
12 / 16	·	

Notes

Control parameters

► The following settings in the parameter file enable the use of the bulk cloud model:

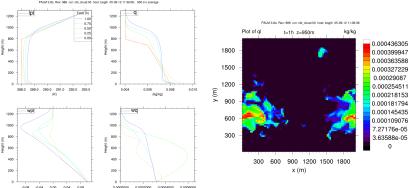
```
\begin{array}{ll} \text{humidity} = .\mathsf{TRUE}. \\ \text{humidity} = .\mathsf{TRUE}. \\ \text{cloud\_physics} = .\mathsf{TRUE}. \\ \text{lumidity} = .\mathsf{TRUE}. \\ \text{cloud\_physics} = .\mathsf{TRUE}. \\ \text{cloud\_physics} = .\mathsf{TRUE}. \\ \text{cloud\_physics} = .\mathsf{TRUE}. \\ \text{cloud\_physics} = .\mathsf{TRUE}. \\ \text{precipitation} = .\mathsf{TRUE}. \\ \text{radiation} = .\mathsf{TRUE}. \\ \text{radiation} = .\mathsf{TRUE}. \\ \end{array}
```

13 / 16

Notes

Example - Setup for a cloudy boundary layer


CBL with shallow cumulus clouds:

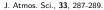
Notes			
Notes			
Notes			
Notes			
Votes			
Notes			
Jotes			
Notes			

Example - Model output

Notes

PALM Seminar

Bibliography



BETTS, A.K., 1973: Non-precipitating cumulus convection and its parameterization.

Quart. J. Roy. Meteor. Soc., 99, 178-196.

Cox, S. K., 1976: Observations of cloud infrared effective emissivity.

CUIJPERS, J.W.M., P.G. DUYNKERKE, 1993: Large eddy simulation of trade wind cumulus clouds.

Deardorff, J. W., 1976: Usefullness of liquid-water potential temperature in shallow-cloud model.

DEARDORFF, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model of the control Bondary-Layer Meteor., 18, 495-527.

KESSLER, E., 1969: On the distribution and continuity of water substance in atmospheric circulation Meteor. Monogr., 32, 84 pp.

RIECHELMANN, T., Y. NOH, S. RAASCH, 2012: A new method for large-eddy simulations of clouds

droplets including the effects of turbulent collision.

PALM Seminar

SOMMERIA, G., J. W. DEARDORFF, 1977: Subgrid-scale condensation in models of nonprecipitating J. Atmos. Sci., 34, 344-355.

CLOUD_PHYSICS.PDF: Introduction to the cloud physics model of PALM. trunk/DOC/tec/methods/cloud_physics/cloud_physics.pdf.

Notes