!> @file temperton_fft_mod.f90 !------------------------------------------------------------------------------! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: temperton_fft_mod.f90 2300 2017-06-29 13:31:14Z basit $ ! NEC related CPP directives removed ! ! 1851 2016-04-08 13:32:50Z maronga ! ! 1850 2016-04-08 13:29:27Z maronga ! Module renamed ! ! ! 1682 2015-10-07 23:56:08Z knoop ! Code annotations made doxygen readable ! ! 1342 2014-03-26 17:04:47Z kanani ! REAL constants defined as wp-kind ! ! 1322 2014-03-20 16:38:49Z raasch ! REAL constants defined as wp-kind ! ! 1320 2014-03-20 08:40:49Z raasch ! ONLY-attribute added to USE-statements, ! kind-parameters added to all INTEGER and REAL declaration statements, ! kinds are defined in new module kinds, ! old module precision_kind is removed, ! revision history before 2012 removed, ! comment fields (!:) to be used for variable explanations added to ! all variable declaration statements ! ! Revision 1.1 2003/03/12 16:41:59 raasch ! Initial revision ! ! ! Description: ! ------------ !> Fast Fourier transformation developed by Clive Temperton, ECMWF. !------------------------------------------------------------------------------! MODULE temperton_fft USE kinds IMPLICIT NONE PRIVATE PUBLIC set99, fft991cy INTEGER(iwp) :: nfax(10) !< array used by *fft991*. INTEGER(iwp), PARAMETER :: nfft = 32 !< maximum length of calls to *fft INTEGER(iwp), PARAMETER :: nout = 6 !< standard output stream REAL(wp), ALLOCATABLE :: trig(:) !< array used by *fft991*. CONTAINS !------------------------------------------------------------------------------! ! Description: ! ------------ !> Calls fortran-versions of fft's. !> !> Method: !> !> Subroutine 'fft991cy' - multiple fast real periodic transform !> supersedes previous routine 'fft991cy'. !> !> Real transform of length n performed by removing redundant !> operations from complex transform of length n. !> !> a is the array containing input & output data. !> work is an area of size (n+1)*min(lot,nfft). !> trigs is a previously prepared list of trig function values. !> ifax is a previously prepared list of factors of n. !> inc is the increment within each data 'vector' !> (e.g. inc=1 for consecutively stored data). !> jump is the increment between the start of each data vector. !> n is the length of the data vectors. !> lot is the number of data vectors. !> isign = +1 for transform from spectral to gridpoint !> = -1 for transform from gridpoint to spectral. !> !> ordering of coefficients: !> a(0),b(0),a(1),b(1),a(2),b(2),.,a(n/2),b(n/2) !> where b(0)=b(n/2)=0; (n+2) locations required. !> !> ordering of data: !> x(0),x(1),x(2),.,x(n-1), 0 , 0 ; (n+2) locations required. !> !> Vectorization is achieved on cray by doing the transforms !> in parallel. !> !> n must be composed of factors 2,3 & 5 but does not have to be even. !> !> definition of transforms: !> !> isign=+1: x(j)=sum(k=0,.,n-1)(c(k)*exp(2*i*j*k*pi/n)) !> where c(k)=a(k)+i*b(k) and c(n-k)=a(k)-i*b(k) !> !> isign=-1: a(k)=(1/n)*sum(j=0,.,n-1)(x(j)*cos(2*j*k*pi/n)) !> b(k)=-(1/n)*sum(j=0,.,n-1)(x(j)*sin(2*j*k*pi/n)) !> !> calls fortran-versions of fft's !!! !> dimension a(n),work(n),trigs(n),ifax(1) !------------------------------------------------------------------------------! SUBROUTINE fft991cy(a,work,trigs,ifax,inc,jump,n,lot,isign) USE kinds IMPLICIT NONE ! Scalar arguments INTEGER(iwp) :: inc !< INTEGER(iwp) :: isign !< INTEGER(iwp) :: jump !< INTEGER(iwp) :: lot !< INTEGER(iwp) :: n !< ! Array arguments REAL(wp) :: a(*) !< REAL(wp) :: trigs(*) !< REAL(wp) :: work(*) !< INTEGER(iwp) :: ifax(*) !< ! Local scalars: INTEGER(iwp) :: i !< INTEGER(iwp) :: ia !< INTEGER(iwp) :: ibase !< INTEGER(iwp) :: ierr !< INTEGER(iwp) :: ifac !< INTEGER(iwp) :: igo !< INTEGER(iwp) :: ii !< INTEGER(iwp) :: istart !< INTEGER(iwp) :: ix !< INTEGER(iwp) :: iz !< INTEGER(iwp) :: j !< INTEGER(iwp) :: jbase !< INTEGER(iwp) :: jj !< INTEGER(iwp) :: k !< INTEGER(iwp) :: la !< INTEGER(iwp) :: nb !< INTEGER(iwp) :: nblox !< INTEGER(iwp) :: nfax !< INTEGER(iwp) :: nvex !< INTEGER(iwp) :: nx !< ! Intrinsic functions ! INTRINSIC MOD ! Executable statements IF (ifax(10)/=n) CALL set99(trigs,ifax,n) nfax = ifax(1) nx = n + 1 IF (MOD(n,2)==1) nx = n nblox = 1 + (lot-1)/nfft nvex = lot - (nblox-1)*nfft IF (isign==-1) GO TO 50 ! isign=+1, spectral to gridpoint transform istart = 1 DO nb = 1, nblox ia = istart i = istart !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO j = 1, nvex a(i+inc) = 0.5_wp*a(i) i = i + jump END DO IF (MOD(n,2)==1) GO TO 10 i = istart + n*inc DO j = 1, nvex a(i) = 0.5_wp*a(i) i = i + jump END DO 10 CONTINUE ia = istart + inc la = 1 igo = + 1 DO k = 1, nfax ifac = ifax(k+1) ierr = -1 IF (igo==-1) GO TO 20 CALL rpassm(a(ia),a(ia+la*inc),work(1),work(ifac*la+1),trigs,inc,1, & & jump,nx,nvex,n,ifac,la,ierr) GO TO 30 20 CONTINUE CALL rpassm(work(1),work(la+1),a(ia),a(ia+ifac*la*inc),trigs,1,inc,nx, & & jump,nvex,n,ifac,la,ierr) 30 CONTINUE IF (ierr/=0) GO TO 100 la = ifac*la igo = -igo ia = istart END DO ! If necessary, copy results back to a IF (MOD(nfax,2)==0) GO TO 40 ibase = 1 jbase = ia DO jj = 1, nvex i = ibase j = jbase DO ii = 1, n a(j) = work(i) i = i + 1 j = j + inc END DO ibase = ibase + nx jbase = jbase + jump END DO 40 CONTINUE ! Fill in zeros at end ix = istart + n*inc !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO j = 1, nvex a(ix) = 0.0_wp a(ix+inc) = 0.0_wp ix = ix + jump END DO istart = istart + nvex*jump nvex = nfft END DO RETURN ! isign=-1, gridpoint to spectral transform 50 CONTINUE istart = 1 DO nb = 1, nblox ia = istart la = n igo = + 1 DO k = 1, nfax ifac = ifax(nfax+2-k) la = la/ifac ierr = -1 IF (igo==-1) GO TO 60 CALL qpassm(a(ia),a(ia+ifac*la*inc),work(1),work(la+1),trigs,inc,1, & & jump,nx,nvex,n,ifac,la,ierr) GO TO 70 60 CONTINUE CALL qpassm(work(1),work(ifac*la+1),a(ia),a(ia+la*inc),trigs,1,inc,nx, & & jump,nvex,n,ifac,la,ierr) 70 CONTINUE IF (ierr/=0) GO TO 100 igo = -igo ia = istart + inc END DO ! If necessary, copy results back to a IF (MOD(nfax,2)==0) GO TO 80 ibase = 1 jbase = ia DO jj = 1, nvex i = ibase j = jbase DO ii = 1, n a(j) = work(i) i = i + 1 j = j + inc END DO ibase = ibase + nx jbase = jbase + jump END DO 80 CONTINUE ! Shift a(0) & fill in zero imag parts ix = istart !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO j = 1, nvex a(ix) = a(ix+inc) a(ix+inc) = 0.0_wp ix = ix + jump END DO IF (MOD(n,2)==1) GO TO 90 iz = istart + (n+1)*inc DO j = 1, nvex a(iz) = 0.0_wp iz = iz + jump END DO 90 CONTINUE istart = istart + nvex*jump nvex = nfft END DO RETURN ! Error messages 100 CONTINUE SELECT CASE (ierr) CASE (:-1) WRITE (nout,'(A,I5,A)') ' Vector length =',nvex,', greater than nfft' CASE (0) WRITE (nout,'(A,I3,A)') ' Factor =',ifac,', not catered for' CASE (1:) WRITE (nout,'(A,I3,A)') ' Factor =',ifac,', only catered for if la*ifac=n' END SELECT RETURN END SUBROUTINE fft991cy !------------------------------------------------------------------------------! ! Description: ! ------------ !> Performs one pass through data as part of !> multiple real fft (fourier analysis) routine. !> !> Method: !> !> a is first real input vector !> equivalence b(1) with a(ifac*la*inc1+1) !> c is first real output vector !> equivalence d(1) with c(la*inc2+1) !> trigs is a precalculated list of sines & cosines !> inc1 is the addressing increment for a !> inc2 is the addressing increment for c !> inc3 is the increment between input vectors a !> inc4 is the increment between output vectors c !> lot is the number of vectors !> n is the length of the vectors !> ifac is the current factor of n !> la = n/(product of factors used so far) !> ierr is an error indicator: !> 0 - pass completed without error !> 1 - lot greater than nfft !> 2 - ifac not catered for !> 3 - ifac only catered for if la=n/ifac !------------------------------------------------------------------------------! SUBROUTINE qpassm(a,b,c,d,trigs,inc1,inc2,inc3,inc4,lot,n,ifac,la,ierr) USE kinds IMPLICIT NONE ! Scalar arguments INTEGER(iwp) :: ierr !< INTEGER(iwp) :: ifac !< INTEGER(iwp) :: inc1 !< INTEGER(iwp) :: inc2 !< INTEGER(iwp) :: inc3 !< INTEGER(iwp) :: inc4 !< INTEGER(iwp) :: la !< INTEGER(iwp) :: lot !< INTEGER(iwp) :: n !< ! Array arguments ! REAL :: a(n),b(n),c(n),d(n),trigs(n) REAL(wp) :: a(*) !< REAL(wp) :: b(*) !< REAL(wp) :: c(*) !< REAL(wp) :: d(*) !< REAL(wp) :: trigs(*) !< ! Local scalars: REAL(wp) :: a0 !< REAL(wp) :: a1 !< REAL(wp) :: a10 !< REAL(wp) :: a11 !< REAL(wp) :: a2 !< REAL(wp) :: a20 !< REAL(wp) :: a21 !< REAL(wp) :: a3 !< REAL(wp) :: a4 !< REAL(wp) :: a5 !< REAL(wp) :: a6 !< REAL(wp) :: b0 !< REAL(wp) :: b1 !< REAL(wp) :: b10 !< REAL(wp) :: b11 !< REAL(wp) :: b2 !< REAL(wp) :: b20 !< REAL(wp) :: b21 !< REAL(wp) :: b3 !< REAL(wp) :: b4 !< REAL(wp) :: b5 !< REAL(wp) :: b6 !< REAL(wp) :: c1 !< REAL(wp) :: c2 !< REAL(wp) :: c3 !< REAL(wp) :: c4 !< REAL(wp) :: c5 !< REAL(wp) :: qrt5 !< REAL(wp) :: s1 !< REAL(wp) :: s2 !< REAL(wp) :: s3 !< REAL(wp) :: s4 !< REAL(wp) :: s5 !< REAL(wp) :: sin36 !< REAL(wp) :: sin45 !< REAL(wp) :: sin60 !< REAL(wp) :: sin72 !< REAL(wp) :: z !< REAL(wp) :: zqrt5 !< REAL(wp) :: zsin36 !< REAL(wp) :: zsin45 !< REAL(wp) :: zsin60 !< REAL(wp) :: zsin72 !< INTEGER(iwp) :: i !< INTEGER(iwp) :: ia !< INTEGER(iwp) :: ib !< INTEGER(iwp) :: ibad !< INTEGER(iwp) :: ibase !< INTEGER(iwp) :: ic !< INTEGER(iwp) :: id !< INTEGER(iwp) :: ie !< INTEGER(iwp) :: if !< INTEGER(iwp) :: ig !< INTEGER(iwp) :: igo !< INTEGER(iwp) :: ih !< INTEGER(iwp) :: iink !< INTEGER(iwp) :: ijk !< INTEGER(iwp) :: ijump !< INTEGER(iwp) :: j !< INTEGER(iwp) :: ja !< INTEGER(iwp) :: jb !< INTEGER(iwp) :: jbase !< INTEGER(iwp) :: jc !< INTEGER(iwp) :: jd !< INTEGER(iwp) :: je !< INTEGER(iwp) :: jf !< INTEGER(iwp) :: jink !< INTEGER(iwp) :: k !< INTEGER(iwp) :: kb !< INTEGER(iwp) :: kc !< INTEGER(iwp) :: kd !< INTEGER(iwp) :: ke !< INTEGER(iwp) :: kf !< INTEGER(iwp) :: kstop !< INTEGER(iwp) :: l !< INTEGER(iwp) :: m !< ! Intrinsic functions ! INTRINSIC REAL, SQRT ! Data statements DATA sin36/0.587785252292473_wp/, sin72/0.951056516295154_wp/, & & qrt5/0.559016994374947_wp/, sin60/0.866025403784437_wp/ ! Executable statements m = n/ifac iink = la*inc1 jink = la*inc2 ijump = (ifac-1)*iink kstop = (n-ifac)/(2*ifac) ibad = 1 IF (lot>nfft) GO TO 180 ibase = 0 jbase = 0 igo = ifac - 1 IF (igo==7) igo = 6 ibad = 2 IF (igo<1 .OR. igo>6) GO TO 180 GO TO (10,40,70,100,130,160) igo ! Coding for factor 2 10 CONTINUE ia = 1 ib = ia + iink ja = 1 jb = ja + (2*m-la)*inc2 IF (la==m) GO TO 30 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = a(ia+i) + a(ib+i) c(jb+j) = a(ia+i) - a(ib+i) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ja = ja + jink jink = 2*jink jb = jb - jink ibase = ibase + ijump ijump = 2*ijump + iink IF (ja==jb) GO TO 20 DO k = la, kstop, la kb = k + k c1 = trigs(kb+1) s1 = trigs(kb+2) jbase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = a(ia+i) + (c1*a(ib+i)+s1*b(ib+i)) c(jb+j) = a(ia+i) - (c1*a(ib+i)+s1*b(ib+i)) d(ja+j) = (c1*b(ib+i)-s1*a(ib+i)) + b(ia+i) d(jb+j) = (c1*b(ib+i)-s1*a(ib+i)) - b(ia+i) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ibase = ibase + ijump ja = ja + jink jb = jb - jink END DO IF (ja>jb) GO TO 170 20 CONTINUE jbase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = a(ia+i) d(ja+j) = -a(ib+i) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 30 CONTINUE z = 1.0_wp/REAL(n,KIND=wp) DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = z*(a(ia+i)+a(ib+i)) c(jb+j) = z*(a(ia+i)-a(ib+i)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 ! Coding for factor 3 40 CONTINUE ia = 1 ib = ia + iink ic = ib + iink ja = 1 jb = ja + (2*m-la)*inc2 jc = jb IF (la==m) GO TO 60 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = a(ia+i) + (a(ib+i)+a(ic+i)) c(jb+j) = a(ia+i) - 0.5_wp*(a(ib+i)+a(ic+i)) d(jb+j) = sin60*(a(ic+i)-a(ib+i)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ja = ja + jink jink = 2*jink jb = jb + jink jc = jc - jink ibase = ibase + ijump ijump = 2*ijump + iink IF (ja==jc) GO TO 50 DO k = la, kstop, la kb = k + k kc = kb + kb c1 = trigs(kb+1) s1 = trigs(kb+2) c2 = trigs(kc+1) s2 = trigs(kc+2) jbase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot a1 = (c1*a(ib+i)+s1*b(ib+i)) + (c2*a(ic+i)+s2*b(ic+i)) b1 = (c1*b(ib+i)-s1*a(ib+i)) + (c2*b(ic+i)-s2*a(ic+i)) a2 = a(ia+i) - 0.5_wp*a1 b2 = b(ia+i) - 0.5_wp*b1 a3 = sin60*((c1*a(ib+i)+s1*b(ib+i))-(c2*a(ic+i)+s2*b(ic+i))) b3 = sin60*((c1*b(ib+i)-s1*a(ib+i))-(c2*b(ic+i)-s2*a(ic+i))) c(ja+j) = a(ia+i) + a1 d(ja+j) = b(ia+i) + b1 c(jb+j) = a2 + b3 d(jb+j) = b2 - a3 c(jc+j) = a2 - b3 d(jc+j) = -(b2+a3) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ibase = ibase + ijump ja = ja + jink jb = jb + jink jc = jc - jink END DO IF (ja>jc) GO TO 170 50 CONTINUE jbase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = a(ia+i) + 0.5_wp*(a(ib+i)-a(ic+i)) d(ja+j) = -sin60*(a(ib+i)+a(ic+i)) c(jb+j) = a(ia+i) - (a(ib+i)-a(ic+i)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 60 CONTINUE z = 1.0_wp/REAL(n,KIND=wp) zsin60 = z*sin60 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = z*(a(ia+i)+(a(ib+i)+a(ic+i))) c(jb+j) = z*(a(ia+i)-0.5_wp*(a(ib+i)+a(ic+i))) d(jb+j) = zsin60*(a(ic+i)-a(ib+i)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 ! Coding for factor 4 70 CONTINUE ia = 1 ib = ia + iink ic = ib + iink id = ic + iink ja = 1 jb = ja + (2*m-la)*inc2 jc = jb + 2*m*inc2 jd = jb IF (la==m) GO TO 90 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = (a(ia+i)+a(ic+i)) + (a(ib+i)+a(id+i)) c(jc+j) = (a(ia+i)+a(ic+i)) - (a(ib+i)+a(id+i)) c(jb+j) = a(ia+i) - a(ic+i) d(jb+j) = a(id+i) - a(ib+i) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ja = ja + jink jink = 2*jink jb = jb + jink jc = jc - jink jd = jd - jink ibase = ibase + ijump ijump = 2*ijump + iink IF (jb==jc) GO TO 80 DO k = la, kstop, la kb = k + k kc = kb + kb kd = kc + kb c1 = trigs(kb+1) s1 = trigs(kb+2) c2 = trigs(kc+1) s2 = trigs(kc+2) c3 = trigs(kd+1) s3 = trigs(kd+2) jbase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot a0 = a(ia+i) + (c2*a(ic+i)+s2*b(ic+i)) a2 = a(ia+i) - (c2*a(ic+i)+s2*b(ic+i)) a1 = (c1*a(ib+i)+s1*b(ib+i)) + (c3*a(id+i)+s3*b(id+i)) a3 = (c1*a(ib+i)+s1*b(ib+i)) - (c3*a(id+i)+s3*b(id+i)) b0 = b(ia+i) + (c2*b(ic+i)-s2*a(ic+i)) b2 = b(ia+i) - (c2*b(ic+i)-s2*a(ic+i)) b1 = (c1*b(ib+i)-s1*a(ib+i)) + (c3*b(id+i)-s3*a(id+i)) b3 = (c1*b(ib+i)-s1*a(ib+i)) - (c3*b(id+i)-s3*a(id+i)) c(ja+j) = a0 + a1 c(jc+j) = a0 - a1 d(ja+j) = b0 + b1 d(jc+j) = b1 - b0 c(jb+j) = a2 + b3 c(jd+j) = a2 - b3 d(jb+j) = b2 - a3 d(jd+j) = -(b2+a3) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ibase = ibase + ijump ja = ja + jink jb = jb + jink jc = jc - jink jd = jd - jink END DO IF (jb>jc) GO TO 170 80 CONTINUE sin45 = SQRT(0.5_wp) jbase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = a(ia+i) + sin45*(a(ib+i)-a(id+i)) c(jb+j) = a(ia+i) - sin45*(a(ib+i)-a(id+i)) d(ja+j) = -a(ic+i) - sin45*(a(ib+i)+a(id+i)) d(jb+j) = a(ic+i) - sin45*(a(ib+i)+a(id+i)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 90 CONTINUE z = 1.0_wp/REAL(n,KIND=wp) DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = z*((a(ia+i)+a(ic+i))+(a(ib+i)+a(id+i))) c(jc+j) = z*((a(ia+i)+a(ic+i))-(a(ib+i)+a(id+i))) c(jb+j) = z*(a(ia+i)-a(ic+i)) d(jb+j) = z*(a(id+i)-a(ib+i)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 ! Coding for factor 5 100 CONTINUE ia = 1 ib = ia + iink ic = ib + iink id = ic + iink ie = id + iink ja = 1 jb = ja + (2*m-la)*inc2 jc = jb + 2*m*inc2 jd = jc je = jb IF (la==m) GO TO 120 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot a1 = a(ib+i) + a(ie+i) a3 = a(ib+i) - a(ie+i) a2 = a(ic+i) + a(id+i) a4 = a(ic+i) - a(id+i) a5 = a(ia+i) - 0.25_wp*(a1+a2) a6 = qrt5*(a1-a2) c(ja+j) = a(ia+i) + (a1+a2) c(jb+j) = a5 + a6 c(jc+j) = a5 - a6 d(jb+j) = -sin72*a3 - sin36*a4 d(jc+j) = -sin36*a3 + sin72*a4 i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ja = ja + jink jink = 2*jink jb = jb + jink jc = jc + jink jd = jd - jink je = je - jink ibase = ibase + ijump ijump = 2*ijump + iink IF (jb==jd) GO TO 110 DO k = la, kstop, la kb = k + k kc = kb + kb kd = kc + kb ke = kd + kb c1 = trigs(kb+1) s1 = trigs(kb+2) c2 = trigs(kc+1) s2 = trigs(kc+2) c3 = trigs(kd+1) s3 = trigs(kd+2) c4 = trigs(ke+1) s4 = trigs(ke+2) jbase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot a1 = (c1*a(ib+i)+s1*b(ib+i)) + (c4*a(ie+i)+s4*b(ie+i)) a3 = (c1*a(ib+i)+s1*b(ib+i)) - (c4*a(ie+i)+s4*b(ie+i)) a2 = (c2*a(ic+i)+s2*b(ic+i)) + (c3*a(id+i)+s3*b(id+i)) a4 = (c2*a(ic+i)+s2*b(ic+i)) - (c3*a(id+i)+s3*b(id+i)) b1 = (c1*b(ib+i)-s1*a(ib+i)) + (c4*b(ie+i)-s4*a(ie+i)) b3 = (c1*b(ib+i)-s1*a(ib+i)) - (c4*b(ie+i)-s4*a(ie+i)) b2 = (c2*b(ic+i)-s2*a(ic+i)) + (c3*b(id+i)-s3*a(id+i)) b4 = (c2*b(ic+i)-s2*a(ic+i)) - (c3*b(id+i)-s3*a(id+i)) a5 = a(ia+i) - 0.25_wp*(a1+a2) a6 = qrt5*(a1-a2) b5 = b(ia+i) - 0.25_wp*(b1+b2) b6 = qrt5*(b1-b2) a10 = a5 + a6 a20 = a5 - a6 b10 = b5 + b6 b20 = b5 - b6 a11 = sin72*b3 + sin36*b4 a21 = sin36*b3 - sin72*b4 b11 = sin72*a3 + sin36*a4 b21 = sin36*a3 - sin72*a4 c(ja+j) = a(ia+i) + (a1+a2) c(jb+j) = a10 + a11 c(je+j) = a10 - a11 c(jc+j) = a20 + a21 c(jd+j) = a20 - a21 d(ja+j) = b(ia+i) + (b1+b2) d(jb+j) = b10 - b11 d(je+j) = -(b10+b11) d(jc+j) = b20 - b21 d(jd+j) = -(b20+b21) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ibase = ibase + ijump ja = ja + jink jb = jb + jink jc = jc + jink jd = jd - jink je = je - jink END DO IF (jb>jd) GO TO 170 110 CONTINUE jbase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot a1 = a(ib+i) + a(ie+i) a3 = a(ib+i) - a(ie+i) a2 = a(ic+i) + a(id+i) a4 = a(ic+i) - a(id+i) a5 = a(ia+i) + 0.25_wp*(a3-a4) a6 = qrt5*(a3+a4) c(ja+j) = a5 + a6 c(jb+j) = a5 - a6 c(jc+j) = a(ia+i) - (a3-a4) d(ja+j) = -sin36*a1 - sin72*a2 d(jb+j) = -sin72*a1 + sin36*a2 i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 120 CONTINUE z = 1.0_wp/REAL(n,KIND=wp) zqrt5 = z*qrt5 zsin36 = z*sin36 zsin72 = z*sin72 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot a1 = a(ib+i) + a(ie+i) a3 = a(ib+i) - a(ie+i) a2 = a(ic+i) + a(id+i) a4 = a(ic+i) - a(id+i) a5 = z*(a(ia+i)-0.25_wp*(a1+a2)) a6 = zqrt5*(a1-a2) c(ja+j) = z*(a(ia+i)+(a1+a2)) c(jb+j) = a5 + a6 c(jc+j) = a5 - a6 d(jb+j) = -zsin72*a3 - zsin36*a4 d(jc+j) = -zsin36*a3 + zsin72*a4 i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 ! Coding for factor 6 130 CONTINUE ia = 1 ib = ia + iink ic = ib + iink id = ic + iink ie = id + iink if = ie + iink ja = 1 jb = ja + (2*m-la)*inc2 jc = jb + 2*m*inc2 jd = jc + 2*m*inc2 je = jc jf = jb IF (la==m) GO TO 150 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot a11 = (a(ic+i)+a(if+i)) + (a(ib+i)+a(ie+i)) c(ja+j) = (a(ia+i)+a(id+i)) + a11 c(jc+j) = (a(ia+i)+a(id+i)-0.5_wp*a11) d(jc+j) = sin60*((a(ic+i)+a(if+i))-(a(ib+i)+a(ie+i))) a11 = (a(ic+i)-a(if+i)) + (a(ie+i)-a(ib+i)) c(jb+j) = (a(ia+i)-a(id+i)) - 0.5_wp*a11 d(jb+j) = sin60*((a(ie+i)-a(ib+i))-(a(ic+i)-a(if+i))) c(jd+j) = (a(ia+i)-a(id+i)) + a11 i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ja = ja + jink jink = 2*jink jb = jb + jink jc = jc + jink jd = jd - jink je = je - jink jf = jf - jink ibase = ibase + ijump ijump = 2*ijump + iink IF (jc==jd) GO TO 140 DO k = la, kstop, la kb = k + k kc = kb + kb kd = kc + kb ke = kd + kb kf = ke + kb c1 = trigs(kb+1) s1 = trigs(kb+2) c2 = trigs(kc+1) s2 = trigs(kc+2) c3 = trigs(kd+1) s3 = trigs(kd+2) c4 = trigs(ke+1) s4 = trigs(ke+2) c5 = trigs(kf+1) s5 = trigs(kf+2) jbase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot a1 = c1*a(ib+i) + s1*b(ib+i) b1 = c1*b(ib+i) - s1*a(ib+i) a2 = c2*a(ic+i) + s2*b(ic+i) b2 = c2*b(ic+i) - s2*a(ic+i) a3 = c3*a(id+i) + s3*b(id+i) b3 = c3*b(id+i) - s3*a(id+i) a4 = c4*a(ie+i) + s4*b(ie+i) b4 = c4*b(ie+i) - s4*a(ie+i) a5 = c5*a(if+i) + s5*b(if+i) b5 = c5*b(if+i) - s5*a(if+i) a11 = (a2+a5) + (a1+a4) a20 = (a(ia+i)+a3) - 0.5_wp*a11 a21 = sin60*((a2+a5)-(a1+a4)) b11 = (b2+b5) + (b1+b4) b20 = (b(ia+i)+b3) - 0.5_wp*b11 b21 = sin60*((b2+b5)-(b1+b4)) c(ja+j) = (a(ia+i)+a3) + a11 d(ja+j) = (b(ia+i)+b3) + b11 c(jc+j) = a20 - b21 d(jc+j) = a21 + b20 c(je+j) = a20 + b21 d(je+j) = a21 - b20 a11 = (a2-a5) + (a4-a1) a20 = (a(ia+i)-a3) - 0.5_wp*a11 a21 = sin60*((a4-a1)-(a2-a5)) b11 = (b5-b2) - (b4-b1) b20 = (b3-b(ia+i)) - 0.5_wp*b11 b21 = sin60*((b5-b2)+(b4-b1)) c(jb+j) = a20 - b21 d(jb+j) = a21 - b20 c(jd+j) = a11 + (a(ia+i)-a3) d(jd+j) = b11 + (b3-b(ia+i)) c(jf+j) = a20 + b21 d(jf+j) = a21 + b20 i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ibase = ibase + ijump ja = ja + jink jb = jb + jink jc = jc + jink jd = jd - jink je = je - jink jf = jf - jink END DO IF (jc>jd) GO TO 170 140 CONTINUE jbase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = (a(ia+i)+0.5_wp*(a(ic+i)-a(ie+i))) + sin60*(a(ib+i)-a(if+i)) d(ja+j) = -(a(id+i)+0.5_wp*(a(ib+i)+a(if+i))) - sin60*(a(ic+i)+a(ie+i)) c(jb+j) = a(ia+i) - (a(ic+i)-a(ie+i)) d(jb+j) = a(id+i) - (a(ib+i)+a(if+i)) c(jc+j) = (a(ia+i)+0.5_wp*(a(ic+i)-a(ie+i))) - sin60*(a(ib+i)-a(if+i)) d(jc+j) = -(a(id+i)+0.5_wp*(a(ib+i)+a(if+i))) + sin60*(a(ic+i)+a(ie+i)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 150 CONTINUE z = 1.0_wp/REAL(n,KIND=wp) zsin60 = z*sin60 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot a11 = (a(ic+i)+a(if+i)) + (a(ib+i)+a(ie+i)) c(ja+j) = z*((a(ia+i)+a(id+i))+a11) c(jc+j) = z*((a(ia+i)+a(id+i))-0.5_wp*a11) d(jc+j) = zsin60*((a(ic+i)+a(if+i))-(a(ib+i)+a(ie+i))) a11 = (a(ic+i)-a(if+i)) + (a(ie+i)-a(ib+i)) c(jb+j) = z*((a(ia+i)-a(id+i))-0.5_wp*a11) d(jb+j) = zsin60*((a(ie+i)-a(ib+i))-(a(ic+i)-a(if+i))) c(jd+j) = z*((a(ia+i)-a(id+i))+a11) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 ! Coding for factor 8 160 CONTINUE ibad = 3 IF (la/=m) GO TO 180 ia = 1 ib = ia + iink ic = ib + iink id = ic + iink ie = id + iink if = ie + iink ig = if + iink ih = ig + iink ja = 1 jb = ja + la*inc2 jc = jb + 2*m*inc2 jd = jc + 2*m*inc2 je = jd + 2*m*inc2 z = 1.0_wp/REAL(n,KIND=wp) zsin45 = z*SQRT(0.5_wp) DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = z*(((a(ia+i)+a(ie+i))+(a(ic+i)+a(ig+i)))+((a(id+i)+ & & a(ih+i))+(a(ib+i)+a(if+i)))) c(je+j) = z*(((a(ia+i)+a(ie+i))+(a(ic+i)+a(ig+i)))-((a(id+i)+ & & a(ih+i))+(a(ib+i)+a(if+i)))) c(jc+j) = z*((a(ia+i)+a(ie+i))-(a(ic+i)+a(ig+i))) d(jc+j) = z*((a(id+i)+a(ih+i))-(a(ib+i)+a(if+i))) c(jb+j) = z*(a(ia+i)-a(ie+i)) + zsin45*((a(ih+i)-a(id+i))-(a(if+ & & i)-a(ib+i))) c(jd+j) = z*(a(ia+i)-a(ie+i)) - zsin45*((a(ih+i)-a(id+i))-(a(if+ & & i)-a(ib+i))) d(jb+j) = zsin45*((a(ih+i)-a(id+i))+(a(if+i)-a(ib+i))) + & & z*(a(ig+i)-a(ic+i)) d(jd+j) = zsin45*((a(ih+i)-a(id+i))+(a(if+i)-a(ib+i))) - & & z*(a(ig+i)-a(ic+i)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ! Return 170 CONTINUE ibad = 0 180 CONTINUE ierr = ibad RETURN END SUBROUTINE qpassm !------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing subroutine description. !------------------------------------------------------------------------------! SUBROUTINE rpassm(a,b,c,d,trigs,inc1,inc2,inc3,inc4,lot,n,ifac,la,ierr) ! Dimension a(n),b(n),c(n),d(n),trigs(n) USE kinds IMPLICIT NONE ! Scalar arguments INTEGER(iwp) :: ierr !< INTEGER(iwp) :: ifac !< INTEGER(iwp) :: inc1 !< INTEGER(iwp) :: inc2 !< INTEGER(iwp) :: inc3 !< INTEGER(iwp) :: inc4 !< INTEGER(iwp) :: la !< INTEGER(iwp) :: lot !< INTEGER(iwp) :: n !< ! Array arguments REAL(wp) :: a(*) !< REAL(wp) :: b(*) !< REAL(wp) :: c(*) !< REAL(wp) :: d(*) !< REAL(wp) :: trigs(*) !< ! Local scalars: REAL(wp) :: c1 !< REAL(wp) :: c2 !< REAL(wp) :: c3 !< REAL(wp) :: c4 !< REAL(wp) :: c5 !< REAL(wp) :: qqrt5 !< REAL(wp) :: qrt5 !< REAL(wp) :: s1 !< REAL(wp) :: s2 !< REAL(wp) :: s3 !< REAL(wp) :: s4 !< REAL(wp) :: s5 !< REAL(wp) :: sin36 !< REAL(wp) :: sin45 !< REAL(wp) :: sin60 !< REAL(wp) :: sin72 !< REAL(wp) :: ssin36 !< REAL(wp) :: ssin45 !< REAL(wp) :: ssin60 !< REAL(wp) :: ssin72 !< INTEGER(iwp) :: i !< INTEGER(iwp) :: ia !< INTEGER(iwp) :: ib !< INTEGER(iwp) :: ibad !< INTEGER(iwp) :: ibase !< INTEGER(iwp) :: ic !< INTEGER(iwp) :: id !< INTEGER(iwp) :: ie !< INTEGER(iwp) :: if !< INTEGER(iwp) :: igo !< INTEGER(iwp) :: iink !< INTEGER(iwp) :: ijk !< INTEGER(iwp) :: j !< INTEGER(iwp) :: ja !< INTEGER(iwp) :: jb !< INTEGER(iwp) :: jbase !< INTEGER(iwp) :: jc !< INTEGER(iwp) :: jd !< INTEGER(iwp) :: je !< INTEGER(iwp) :: jf !< INTEGER(iwp) :: jg !< INTEGER(iwp) :: jh !< INTEGER(iwp) :: jink !< INTEGER(iwp) :: jump !< INTEGER(iwp) :: k !< INTEGER(iwp) :: kb !< INTEGER(iwp) :: kc !< INTEGER(iwp) :: kd !< INTEGER(iwp) :: ke !< INTEGER(iwp) :: kf !< INTEGER(iwp) :: kstop !< INTEGER(iwp) :: l !< INTEGER(iwp) :: m !< ! Local arrays: REAL(wp) :: a10(nfft) !< REAL(wp) :: a11(nfft) !< REAL(wp) :: a20(nfft) !< REAL(wp) :: a21(nfft) !< REAL(wp) :: b10(nfft) !< REAL(wp) :: b11(nfft) !< REAL(wp) :: b20(nfft) !< REAL(wp) :: b21(nfft) !< ! Intrinsic functions ! INTRINSIC SQRT ! Data statements DATA sin36/0.587785252292473_wp/, sin72/0.951056516295154_wp/, & & qrt5/0.559016994374947_wp/, sin60/0.866025403784437_wp/ ! Executable statements m = n/ifac iink = la*inc1 jink = la*inc2 jump = (ifac-1)*jink kstop = (n-ifac)/(2*ifac) ibad = 1 IF (lot>nfft) GO TO 180 ibase = 0 jbase = 0 igo = ifac - 1 IF (igo==7) igo = 6 ibad = 2 IF (igo<1 .OR. igo>6) GO TO 180 GO TO (10,40,70,100,130,160) igo ! Coding for factor 2 10 CONTINUE ia = 1 ib = ia + (2*m-la)*inc1 ja = 1 jb = ja + jink IF (la==m) GO TO 30 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = a(ia+i) + a(ib+i) c(jb+j) = a(ia+i) - a(ib+i) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ia = ia + iink iink = 2*iink ib = ib - iink ibase = 0 jbase = jbase + jump jump = 2*jump + jink IF (ia==ib) GO TO 20 DO k = la, kstop, la kb = k + k c1 = trigs(kb+1) s1 = trigs(kb+2) ibase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = a(ia+i) + a(ib+i) d(ja+j) = b(ia+i) - b(ib+i) c(jb+j) = c1*(a(ia+i)-a(ib+i)) - s1*(b(ia+i)+b(ib+i)) d(jb+j) = s1*(a(ia+i)-a(ib+i)) + c1*(b(ia+i)+b(ib+i)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ia = ia + iink ib = ib - iink jbase = jbase + jump END DO IF (ia>ib) GO TO 170 20 CONTINUE ibase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = a(ia+i) c(jb+j) = -b(ia+i) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 30 CONTINUE DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = 2.0_wp*(a(ia+i)+a(ib+i)) c(jb+j) = 2.0_wp*(a(ia+i)-a(ib+i)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 ! Coding for factor 3 40 CONTINUE ia = 1 ib = ia + (2*m-la)*inc1 ic = ib ja = 1 jb = ja + jink jc = jb + jink IF (la==m) GO TO 60 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = a(ia+i) + a(ib+i) c(jb+j) = (a(ia+i)-0.5_wp*a(ib+i)) - (sin60*(b(ib+i))) c(jc+j) = (a(ia+i)-0.5_wp*a(ib+i)) + (sin60*(b(ib+i))) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ia = ia + iink iink = 2*iink ib = ib + iink ic = ic - iink jbase = jbase + jump jump = 2*jump + jink IF (ia==ic) GO TO 50 DO k = la, kstop, la kb = k + k kc = kb + kb c1 = trigs(kb+1) s1 = trigs(kb+2) c2 = trigs(kc+1) s2 = trigs(kc+2) ibase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = a(ia+i) + (a(ib+i)+a(ic+i)) d(ja+j) = b(ia+i) + (b(ib+i)-b(ic+i)) c(jb+j) = c1*((a(ia+i)-0.5_wp*(a(ib+i)+a(ic+i)))-(sin60*(b(ib+i)+ & & b(ic+i)))) & & - s1*((b(ia+i)-0.5_wp*(b(ib+i)-b(ic+i)))+(sin60*(a(ib+i)- & & a(ic+i)))) d(jb+j) = s1*((a(ia+i)-0.5_wp*(a(ib+i)+a(ic+i)))-(sin60*(b(ib+i)+ & & b(ic+i)))) & & + c1*((b(ia+i)-0.5_wp*(b(ib+i)-b(ic+i)))+(sin60*(a(ib+i)- & & a(ic+i)))) c(jc+j) = c2*((a(ia+i)-0.5_wp*(a(ib+i)+a(ic+i)))+(sin60*(b(ib+i)+ & & b(ic+i)))) & & - s2*((b(ia+i)-0.5_wp*(b(ib+i)-b(ic+i)))-(sin60*(a(ib+i)- & & a(ic+i)))) d(jc+j) = s2*((a(ia+i)-0.5_wp*(a(ib+i)+a(ic+i)))+(sin60*(b(ib+i)+ & & b(ic+i)))) & & + c2*((b(ia+i)-0.5_wp*(b(ib+i)-b(ic+i)))-(sin60*(a(ib+i)- & & a(ic+i)))) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ia = ia + iink ib = ib + iink ic = ic - iink jbase = jbase + jump END DO IF (ia>ic) GO TO 170 50 CONTINUE ibase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = a(ia+i) + a(ib+i) c(jb+j) = (0.5_wp*a(ia+i)-a(ib+i)) - (sin60*b(ia+i)) c(jc+j) = -(0.5_wp*a(ia+i)-a(ib+i)) - (sin60*b(ia+i)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 60 CONTINUE ssin60 = 2.0_wp*sin60 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = 2.0_wp*(a(ia+i)+a(ib+i)) c(jb+j) = (2.0_wp*a(ia+i)-a(ib+i)) - (ssin60*b(ib+i)) c(jc+j) = (2.0_wp*a(ia+i)-a(ib+i)) + (ssin60*b(ib+i)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 ! Coding for factor 4 70 CONTINUE ia = 1 ib = ia + (2*m-la)*inc1 ic = ib + 2*m*inc1 id = ib ja = 1 jb = ja + jink jc = jb + jink jd = jc + jink IF (la==m) GO TO 90 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = (a(ia+i)+a(ic+i)) + a(ib+i) c(jb+j) = (a(ia+i)-a(ic+i)) - b(ib+i) c(jc+j) = (a(ia+i)+a(ic+i)) - a(ib+i) c(jd+j) = (a(ia+i)-a(ic+i)) + b(ib+i) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ia = ia + iink iink = 2*iink ib = ib + iink ic = ic - iink id = id - iink jbase = jbase + jump jump = 2*jump + jink IF (ib==ic) GO TO 80 DO k = la, kstop, la kb = k + k kc = kb + kb kd = kc + kb c1 = trigs(kb+1) s1 = trigs(kb+2) c2 = trigs(kc+1) s2 = trigs(kc+2) c3 = trigs(kd+1) s3 = trigs(kd+2) ibase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = (a(ia+i)+a(ic+i)) + (a(ib+i)+a(id+i)) d(ja+j) = (b(ia+i)-b(ic+i)) + (b(ib+i)-b(id+i)) c(jc+j) = c2*((a(ia+i)+a(ic+i))-(a(ib+i)+a(id+i))) - s2*((b(ia+ & & i)-b(ic+i))-(b(ib+i)-b(id+i))) d(jc+j) = s2*((a(ia+i)+a(ic+i))-(a(ib+i)+a(id+i))) + c2*((b(ia+ & & i)-b(ic+i))-(b(ib+i)-b(id+i))) c(jb+j) = c1*((a(ia+i)-a(ic+i))-(b(ib+i)+b(id+i))) - s1*((b(ia+ & & i)+b(ic+i))+(a(ib+i)-a(id+i))) d(jb+j) = s1*((a(ia+i)-a(ic+i))-(b(ib+i)+b(id+i))) + c1*((b(ia+ & & i)+b(ic+i))+(a(ib+i)-a(id+i))) c(jd+j) = c3*((a(ia+i)-a(ic+i))+(b(ib+i)+b(id+i))) - s3*((b(ia+ & & i)+b(ic+i))-(a(ib+i)-a(id+i))) d(jd+j) = s3*((a(ia+i)-a(ic+i))+(b(ib+i)+b(id+i))) + c3*((b(ia+ & & i)+b(ic+i))-(a(ib+i)-a(id+i))) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ia = ia + iink ib = ib + iink ic = ic - iink id = id - iink jbase = jbase + jump END DO IF (ib>ic) GO TO 170 80 CONTINUE ibase = 0 sin45 = SQRT(0.5_wp) DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = a(ia+i) + a(ib+i) c(jb+j) = sin45*((a(ia+i)-a(ib+i))-(b(ia+i)+b(ib+i))) c(jc+j) = b(ib+i) - b(ia+i) c(jd+j) = -sin45*((a(ia+i)-a(ib+i))+(b(ia+i)+b(ib+i))) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 90 CONTINUE DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = 2.0_wp*((a(ia+i)+a(ic+i))+a(ib+i)) c(jb+j) = 2.0_wp*((a(ia+i)-a(ic+i))-b(ib+i)) c(jc+j) = 2.0_wp*((a(ia+i)+a(ic+i))-a(ib+i)) c(jd+j) = 2.0_wp*((a(ia+i)-a(ic+i))+b(ib+i)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ! Coding for factor 5 GO TO 170 100 CONTINUE ia = 1 ib = ia + (2*m-la)*inc1 ic = ib + 2*m*inc1 id = ic ie = ib ja = 1 jb = ja + jink jc = jb + jink jd = jc + jink je = jd + jink IF (la==m) GO TO 120 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = a(ia+i) + (a(ib+i)+a(ic+i)) c(jb+j) = ((a(ia+i)-0.25_wp*(a(ib+i)+a(ic+i)))+qrt5*(a(ib+i)-a(ic+i))) - & & (sin72*b(ib+i)+sin36*b(ic+i)) c(jc+j) = ((a(ia+i)-0.25_wp*(a(ib+i)+a(ic+i)))-qrt5*(a(ib+i)-a(ic+i))) - & & (sin36*b(ib+i)-sin72*b(ic+i)) c(jd+j) = ((a(ia+i)-0.25_wp*(a(ib+i)+a(ic+i)))-qrt5*(a(ib+i)-a(ic+i))) + & & (sin36*b(ib+i)-sin72*b(ic+i)) c(je+j) = ((a(ia+i)-0.25_wp*(a(ib+i)+a(ic+i)))+qrt5*(a(ib+i)-a(ic+i))) + & & (sin72*b(ib+i)+sin36*b(ic+i)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ia = ia + iink iink = 2*iink ib = ib + iink ic = ic + iink id = id - iink ie = ie - iink jbase = jbase + jump jump = 2*jump + jink IF (ib==id) GO TO 110 DO k = la, kstop, la kb = k + k kc = kb + kb kd = kc + kb ke = kd + kb c1 = trigs(kb+1) s1 = trigs(kb+2) c2 = trigs(kc+1) s2 = trigs(kc+2) c3 = trigs(kd+1) s3 = trigs(kd+2) c4 = trigs(ke+1) s4 = trigs(ke+2) ibase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot a10(ijk) = (a(ia+i)-0.25_wp*((a(ib+i)+a(ie+i))+(a(ic+i)+a(id+i)))) + & & qrt5*((a(ib+i)+a(ie+i))-(a(ic+i)+a(id+i))) a20(ijk) = (a(ia+i)-0.25_wp*((a(ib+i)+a(ie+i))+(a(ic+i)+a(id+i)))) - & & qrt5*((a(ib+i)+a(ie+i))-(a(ic+i)+a(id+i))) b10(ijk) = (b(ia+i)-0.25_wp*((b(ib+i)-b(ie+i))+(b(ic+i)-b(id+i)))) + & & qrt5*((b(ib+i)-b(ie+i))-(b(ic+i)-b(id+i))) b20(ijk) = (b(ia+i)-0.25_wp*((b(ib+i)-b(ie+i))+(b(ic+i)-b(id+i)))) - & & qrt5*((b(ib+i)-b(ie+i))-(b(ic+i)-b(id+i))) a11(ijk) = sin72*(b(ib+i)+b(ie+i)) + sin36*(b(ic+i)+b(id+i)) a21(ijk) = sin36*(b(ib+i)+b(ie+i)) - sin72*(b(ic+i)+b(id+i)) b11(ijk) = sin72*(a(ib+i)-a(ie+i)) + sin36*(a(ic+i)-a(id+i)) b21(ijk) = sin36*(a(ib+i)-a(ie+i)) - sin72*(a(ic+i)-a(id+i)) c(ja+j) = a(ia+i) + ((a(ib+i)+a(ie+i))+(a(ic+i)+a(id+i))) d(ja+j) = b(ia+i) + ((b(ib+i)-b(ie+i))+(b(ic+i)-b(id+i))) c(jb+j) = c1*(a10(ijk)-a11(ijk)) - s1*(b10(ijk)+b11(ijk)) d(jb+j) = s1*(a10(ijk)-a11(ijk)) + c1*(b10(ijk)+b11(ijk)) c(je+j) = c4*(a10(ijk)+a11(ijk)) - s4*(b10(ijk)-b11(ijk)) d(je+j) = s4*(a10(ijk)+a11(ijk)) + c4*(b10(ijk)-b11(ijk)) c(jc+j) = c2*(a20(ijk)-a21(ijk)) - s2*(b20(ijk)+b21(ijk)) d(jc+j) = s2*(a20(ijk)-a21(ijk)) + c2*(b20(ijk)+b21(ijk)) c(jd+j) = c3*(a20(ijk)+a21(ijk)) - s3*(b20(ijk)-b21(ijk)) d(jd+j) = s3*(a20(ijk)+a21(ijk)) + c3*(b20(ijk)-b21(ijk)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ia = ia + iink ib = ib + iink ic = ic + iink id = id - iink ie = ie - iink jbase = jbase + jump END DO IF (ib>id) GO TO 170 110 CONTINUE ibase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = (a(ia+i)+a(ib+i)) + a(ic+i) c(jb+j) = (qrt5*(a(ia+i)-a(ib+i))+(0.25_wp*(a(ia+i)+a(ib+i))-a(ic+i))) - & & (sin36*b(ia+i)+sin72*b(ib+i)) c(je+j) = -(qrt5*(a(ia+i)-a(ib+i))+(0.25_wp*(a(ia+i)+a(ib+i))-a(ic+i))) - & & (sin36*b(ia+i)+sin72*b(ib+i)) c(jc+j) = (qrt5*(a(ia+i)-a(ib+i))-(0.25_wp*(a(ia+i)+a(ib+i))-a(ic+i))) - & & (sin72*b(ia+i)-sin36*b(ib+i)) c(jd+j) = -(qrt5*(a(ia+i)-a(ib+i))-(0.25_wp*(a(ia+i)+a(ib+i))-a(ic+i))) - & & (sin72*b(ia+i)-sin36*b(ib+i)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 120 CONTINUE qqrt5 = 2.0_wp*qrt5 ssin36 = 2.0_wp*sin36 ssin72 = 2.0_wp*sin72 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = 2.0_wp*(a(ia+i)+(a(ib+i)+a(ic+i))) c(jb+j) = (2.0_wp*(a(ia+i)-0.25_wp*(a(ib+i)+a(ic+i)))+qqrt5*(a(ib+i)-a(ic+ & & i))) - (ssin72*b(ib+i)+ssin36*b(ic+i)) c(jc+j) = (2.0_wp*(a(ia+i)-0.25_wp*(a(ib+i)+a(ic+i)))-qqrt5*(a(ib+i)-a(ic+ & & i))) - (ssin36*b(ib+i)-ssin72*b(ic+i)) c(jd+j) = (2.0_wp*(a(ia+i)-0.25_wp*(a(ib+i)+a(ic+i)))-qqrt5*(a(ib+i)-a(ic+ & & i))) + (ssin36*b(ib+i)-ssin72*b(ic+i)) c(je+j) = (2.0_wp*(a(ia+i)-0.25_wp*(a(ib+i)+a(ic+i)))+qqrt5*(a(ib+i)-a(ic+ & & i))) + (ssin72*b(ib+i)+ssin36*b(ic+i)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 ! Coding for factor 6 130 CONTINUE ia = 1 ib = ia + (2*m-la)*inc1 ic = ib + 2*m*inc1 id = ic + 2*m*inc1 ie = ic if = ib ja = 1 jb = ja + jink jc = jb + jink jd = jc + jink je = jd + jink jf = je + jink IF (la==m) GO TO 150 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = (a(ia+i)+a(id+i)) + (a(ib+i)+a(ic+i)) c(jd+j) = (a(ia+i)-a(id+i)) - (a(ib+i)-a(ic+i)) c(jb+j) = ((a(ia+i)-a(id+i))+0.5_wp*(a(ib+i)-a(ic+i))) - (sin60*(b(ib+ & & i)+b(ic+i))) c(jf+j) = ((a(ia+i)-a(id+i))+0.5_wp*(a(ib+i)-a(ic+i))) + (sin60*(b(ib+ & & i)+b(ic+i))) c(jc+j) = ((a(ia+i)+a(id+i))-0.5_wp*(a(ib+i)+a(ic+i))) - (sin60*(b(ib+ & & i)-b(ic+i))) c(je+j) = ((a(ia+i)+a(id+i))-0.5_wp*(a(ib+i)+a(ic+i))) + (sin60*(b(ib+ & & i)-b(ic+i))) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ia = ia + iink iink = 2*iink ib = ib + iink ic = ic + iink id = id - iink ie = ie - iink if = if - iink jbase = jbase + jump jump = 2*jump + jink IF (ic==id) GO TO 140 DO k = la, kstop, la kb = k + k kc = kb + kb kd = kc + kb ke = kd + kb kf = ke + kb c1 = trigs(kb+1) s1 = trigs(kb+2) c2 = trigs(kc+1) s2 = trigs(kc+2) c3 = trigs(kd+1) s3 = trigs(kd+2) c4 = trigs(ke+1) s4 = trigs(ke+2) c5 = trigs(kf+1) s5 = trigs(kf+2) ibase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot a11(ijk) = (a(ie+i)+a(ib+i)) + (a(ic+i)+a(if+i)) a20(ijk) = (a(ia+i)+a(id+i)) - 0.5_wp*a11(ijk) a21(ijk) = sin60*((a(ie+i)+a(ib+i))-(a(ic+i)+a(if+i))) b11(ijk) = (b(ib+i)-b(ie+i)) + (b(ic+i)-b(if+i)) b20(ijk) = (b(ia+i)-b(id+i)) - 0.5_wp*b11(ijk) b21(ijk) = sin60*((b(ib+i)-b(ie+i))-(b(ic+i)-b(if+i))) c(ja+j) = (a(ia+i)+a(id+i)) + a11(ijk) d(ja+j) = (b(ia+i)-b(id+i)) + b11(ijk) c(jc+j) = c2*(a20(ijk)-b21(ijk)) - s2*(b20(ijk)+a21(ijk)) d(jc+j) = s2*(a20(ijk)-b21(ijk)) + c2*(b20(ijk)+a21(ijk)) c(je+j) = c4*(a20(ijk)+b21(ijk)) - s4*(b20(ijk)-a21(ijk)) d(je+j) = s4*(a20(ijk)+b21(ijk)) + c4*(b20(ijk)-a21(ijk)) a11(ijk) = (a(ie+i)-a(ib+i)) + (a(ic+i)-a(if+i)) b11(ijk) = (b(ie+i)+b(ib+i)) - (b(ic+i)+b(if+i)) a20(ijk) = (a(ia+i)-a(id+i)) - 0.5_wp*a11(ijk) a21(ijk) = sin60*((a(ie+i)-a(ib+i))-(a(ic+i)-a(if+i))) b20(ijk) = (b(ia+i)+b(id+i)) + 0.5_wp*b11(ijk) b21(ijk) = sin60*((b(ie+i)+b(ib+i))+(b(ic+i)+b(if+i))) c(jd+j) = c3*((a(ia+i)-a(id+i))+a11(ijk)) - s3*((b(ia+i)+b(id+ & & i))-b11(ijk)) d(jd+j) = s3*((a(ia+i)-a(id+i))+a11(ijk)) + c3*((b(ia+i)+b(id+ & & i))-b11(ijk)) c(jb+j) = c1*(a20(ijk)-b21(ijk)) - s1*(b20(ijk)-a21(ijk)) d(jb+j) = s1*(a20(ijk)-b21(ijk)) + c1*(b20(ijk)-a21(ijk)) c(jf+j) = c5*(a20(ijk)+b21(ijk)) - s5*(b20(ijk)+a21(ijk)) d(jf+j) = s5*(a20(ijk)+b21(ijk)) + c5*(b20(ijk)+a21(ijk)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ia = ia + iink ib = ib + iink ic = ic + iink id = id - iink ie = ie - iink if = if - iink jbase = jbase + jump END DO IF (ic>id) GO TO 170 140 CONTINUE ibase = 0 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = a(ib+i) + (a(ia+i)+a(ic+i)) c(jd+j) = b(ib+i) - (b(ia+i)+b(ic+i)) c(jb+j) = (sin60*(a(ia+i)-a(ic+i))) - (0.5_wp*(b(ia+i)+b(ic+i))+b(ib+i)) c(jf+j) = -(sin60*(a(ia+i)-a(ic+i))) - (0.5_wp*(b(ia+i)+b(ic+i))+b(ib+i)) c(jc+j) = sin60*(b(ic+i)-b(ia+i)) + (0.5_wp*(a(ia+i)+a(ic+i))-a(ib+i)) c(je+j) = sin60*(b(ic+i)-b(ia+i)) - (0.5_wp*(a(ia+i)+a(ic+i))-a(ib+i)) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 150 CONTINUE ssin60 = 2.0_wp*sin60 DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = (2.0_wp*(a(ia+i)+a(id+i))) + (2.0_wp*(a(ib+i)+a(ic+i))) c(jd+j) = (2.0_wp*(a(ia+i)-a(id+i))) - (2.0_wp*(a(ib+i)-a(ic+i))) c(jb+j) = (2.0_wp*(a(ia+i)-a(id+i))+(a(ib+i)-a(ic+i))) - (ssin60*(b(ib+ & & i)+b(ic+i))) c(jf+j) = (2.0_wp*(a(ia+i)-a(id+i))+(a(ib+i)-a(ic+i))) + (ssin60*(b(ib+ & & i)+b(ic+i))) c(jc+j) = (2.0_wp*(a(ia+i)+a(id+i))-(a(ib+i)+a(ic+i))) - (ssin60*(b(ib+ & & i)-b(ic+i))) c(je+j) = (2.0_wp*(a(ia+i)+a(id+i))-(a(ib+i)+a(ic+i))) + (ssin60*(b(ib+ & & i)-b(ic+i))) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO GO TO 170 ! Coding for factor 8 160 CONTINUE ibad = 3 IF (la/=m) GO TO 180 ia = 1 ib = ia + la*inc1 ic = ib + 2*la*inc1 id = ic + 2*la*inc1 ie = id + 2*la*inc1 ja = 1 jb = ja + jink jc = jb + jink jd = jc + jink je = jd + jink jf = je + jink jg = jf + jink jh = jg + jink ssin45 = SQRT(2.0_wp) DO l = 1, la i = ibase j = jbase !DIR$ IVDEP !CDIR NODEP !OCL NOVREC DO ijk = 1, lot c(ja+j) = 2.0_wp*(((a(ia+i)+a(ie+i))+a(ic+i))+(a(ib+i)+a(id+i))) c(je+j) = 2.0_wp*(((a(ia+i)+a(ie+i))+a(ic+i))-(a(ib+i)+a(id+i))) c(jc+j) = 2.0_wp*(((a(ia+i)+a(ie+i))-a(ic+i))-(b(ib+i)-b(id+i))) c(jg+j) = 2.0_wp*(((a(ia+i)+a(ie+i))-a(ic+i))+(b(ib+i)-b(id+i))) c(jb+j) = 2.0_wp*((a(ia+i)-a(ie+i))-b(ic+i)) + ssin45*((a(ib+i)-a(id+ & & i))-(b(ib+i)+b(id+i))) c(jf+j) = 2.0_wp*((a(ia+i)-a(ie+i))-b(ic+i)) - ssin45*((a(ib+i)-a(id+ & & i))-(b(ib+i)+b(id+i))) c(jd+j) = 2.0_wp*((a(ia+i)-a(ie+i))+b(ic+i)) - ssin45*((a(ib+i)-a(id+ & & i))+(b(ib+i)+b(id+i))) c(jh+j) = 2.0_wp*((a(ia+i)-a(ie+i))+b(ic+i)) + ssin45*((a(ib+i)-a(id+ & & i))+(b(ib+i)+b(id+i))) i = i + inc3 j = j + inc4 END DO ibase = ibase + inc1 jbase = jbase + inc2 END DO ! Return 170 CONTINUE ibad = 0 180 CONTINUE ierr = ibad RETURN END SUBROUTINE rpassm !------------------------------------------------------------------------------! ! Description: ! ------------ !> Computes factors of n & trigonometric functins required by fft99 & fft991cy !> Method: Dimension trigs(n),ifax(1),jfax(10),lfax(7) !> subroutine 'set99' - computes factors of n & trigonometric !> functins required by fft99 & fft991cy !------------------------------------------------------------------------------! SUBROUTINE set99(trigs,ifax,n) USE control_parameters, & ONLY: message_string USE kinds IMPLICIT NONE ! Scalar arguments INTEGER(iwp) :: n !< ! Array arguments INTEGER(iwp) :: ifax(*) !< REAL(wp) :: trigs(*) !< ! Local scalars: REAL(wp) :: angle !< REAL(wp) :: del !< INTEGER(iwp) :: i !< INTEGER(iwp) :: ifac !< INTEGER(iwp) :: ixxx !< INTEGER(iwp) :: k !< INTEGER(iwp) :: l !< INTEGER(iwp) :: nfax !< INTEGER(iwp) :: nhl !< INTEGER(iwp) :: nil !< INTEGER(iwp) :: nu !< ! Local arrays: INTEGER(iwp) :: jfax(10) !< INTEGER(iwp) :: lfax(7) !< ! Intrinsic functions ! INTRINSIC ASIN, COS, MOD, REAL, SIN ! Data statements DATA lfax/6, 8, 5, 4, 3, 2, 1/ ! Executable statements ixxx = 1 del = 4.0_wp*ASIN(1.0_wp)/REAL(n,KIND=wp) nil = 0 nhl = (n/2) - 1 DO k = nil, nhl angle = REAL(k,KIND=wp)*del trigs(2*k+1) = COS(angle) trigs(2*k+2) = SIN(angle) END DO ! Find factors of n (8,6,5,4,3,2; only one 8 allowed) ! Look for sixes first, store factors in descending order nu = n ifac = 6 k = 0 l = 1 10 CONTINUE IF (MOD(nu,ifac)/=0) GO TO 30 k = k + 1 jfax(k) = ifac IF (ifac/=8) GO TO 20 IF (k==1) GO TO 20 jfax(1) = 8 jfax(k) = 6 20 CONTINUE nu = nu/ifac IF (nu==1) GO TO 40 IF (ifac/=8) GO TO 10 30 CONTINUE l = l + 1 ifac = lfax(l) IF (ifac>1) GO TO 10 ! WRITE (nout,'(A,I4,A)') ' n =',n,' - Contains illegal factors' message_string = 'number of gridpoints along x or/and y ' // & 'contain illegal factors' // & '&only factors 8,6,5,4,3,2 are allowed' CALL message( 'temperton_fft', 'PA0311', 1, 2, 0, 6, 0 ) RETURN ! Now reverse order of factors 40 CONTINUE nfax = k ifax(1) = nfax DO i = 1, nfax ifax(nfax+2-i) = jfax(i) END DO ifax(10) = n RETURN END SUBROUTINE set99 END MODULE temperton_fft