!> @file surface_coupler.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2020 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ------------------ ! ! ! Former revisions: ! ----------------- ! $Id: surface_coupler.f90 4671 2020-09-09 20:27:58Z schwenkel $ ! Implementation of downward facing USM and LSM surfaces ! ! 4429 2020-02-27 15:24:30Z raasch ! bugfix: preprocessor directives rearranged for serial mode ! ! 4360 2020-01-07 11:25:50Z suehring ! Corrected "Former revisions" section ! ! 3655 2019-01-07 16:51:22Z knoop ! Modularization of all bulk cloud physics code components ! ! 109 2007-08-28 15:26:47Z letzel ! Initial revision ! ! Description: ! ------------ !> Data exchange at the interface between coupled models !------------------------------------------------------------------------------! SUBROUTINE surface_coupler #if defined( __parallel ) USE arrays_3d, & ONLY: pt, rho_ocean, sa, total_2d_a, total_2d_o, u, v USE basic_constants_and_equations_mod, & ONLY: c_p, l_v USE control_parameters, & ONLY: coupling_mode, coupling_mode_remote, coupling_topology, & humidity, humidity_remote, land_surface, message_string, & terminate_coupled, terminate_coupled_remote, & time_since_reference_point, urban_surface USE cpulog, & ONLY: cpu_log, log_point USE indices, & ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, nx_a, nx_o, ny, nyn, nyng, nys, & nysg, ny_a, ny_o, nzt USE kinds USE pegrid USE surface_mod, & ONLY : surf_def_h, surf_lsm_h, surf_type, surf_usm_h IMPLICIT NONE INTEGER(iwp) :: i !< index variable x-direction INTEGER(iwp) :: j !< index variable y-direction INTEGER(iwp) :: m !< running index for surface elements REAL(wp) :: cpw = 4218.0_wp !< heat capacity of water at constant pressure REAL(wp) :: time_since_reference_point_rem !< REAL(wp) :: total_2d(-nbgp:ny+nbgp,-nbgp:nx+nbgp) !< REAL(wp), DIMENSION(nysg:nyng,nxlg:nxrg) :: surface_flux !< dummy array for surface fluxes on 2D grid CALL cpu_log( log_point(39), 'surface_coupler', 'start' ) ! !-- In case of model termination initiated by the remote model !-- (terminate_coupled_remote > 0), initiate termination of the local model. !-- The rest of the coupler must then be skipped because it would cause an MPI !-- intercomminucation hang. !-- If necessary, the coupler will be called at the beginning of the next !-- restart run. IF ( coupling_topology == 0 ) THEN CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, target_id, & 0, & terminate_coupled_remote, 1, MPI_INTEGER, target_id, & 0, comm_inter, status, ierr ) ELSE IF ( myid == 0) THEN CALL MPI_SENDRECV( terminate_coupled, 1, MPI_INTEGER, & target_id, 0, & terminate_coupled_remote, 1, MPI_INTEGER, & target_id, 0, & comm_inter, status, ierr ) ENDIF CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, & ierr ) ALLOCATE( total_2d_a(-nbgp:ny_a+nbgp,-nbgp:nx_a+nbgp), & total_2d_o(-nbgp:ny_o+nbgp,-nbgp:nx_o+nbgp) ) ENDIF IF ( terminate_coupled_remote > 0 ) THEN WRITE( message_string, * ) 'remote model "', & TRIM( coupling_mode_remote ), & '" terminated', & '&with terminate_coupled_remote = ', & terminate_coupled_remote, & '&local model "', TRIM( coupling_mode ), & '" has', & '&terminate_coupled = ', & terminate_coupled CALL message( 'surface_coupler', 'PA0310', 1, 2, 0, 6, 0 ) RETURN ENDIF ! !-- Exchange the current simulated time between the models, !-- currently just for total_2d IF ( coupling_topology == 0 ) THEN CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, 11, & comm_inter, ierr ) CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, target_id, & 11, comm_inter, status, ierr ) ELSE IF ( myid == 0 ) THEN CALL MPI_SEND( time_since_reference_point, 1, MPI_REAL, target_id, & 11, comm_inter, ierr ) CALL MPI_RECV( time_since_reference_point_rem, 1, MPI_REAL, & target_id, 11, comm_inter, status, ierr ) ENDIF CALL MPI_BCAST( time_since_reference_point_rem, 1, MPI_REAL, 0, comm2d, & ierr ) ENDIF ! !-- Exchange the interface data IF ( coupling_mode == 'atmosphere_to_ocean' ) THEN ! !-- Horizontal grid size and number of processors is equal in ocean and !-- atmosphere IF ( coupling_topology == 0 ) THEN ! !-- Send heat flux at bottom surface to the ocean. First, transfer from !-- 1D surface type to 2D grid. CALL transfer_1D_to_2D_equal( surf_def_h(0)%shf, surf_lsm_h(0)%shf, & surf_usm_h(0)%shf ) CALL MPI_SEND( surface_flux(nysg,nxlg), ngp_xy, MPI_REAL, target_id, & 12, comm_inter, ierr ) ! !-- Send humidity flux at bottom surface to the ocean. First, transfer !-- from 1D surface type to 2D grid. CALL transfer_1D_to_2D_equal( surf_def_h(0)%qsws, surf_lsm_h(0)%qsws, & surf_usm_h(0)%qsws ) IF ( humidity ) THEN CALL MPI_SEND( surface_flux(nysg,nxlg), ngp_xy, MPI_REAL, & target_id, 13, comm_inter, ierr ) ENDIF ! !-- Receive temperature at the bottom surface from the ocean CALL MPI_RECV( pt(0,nysg,nxlg), 1, type_xy, target_id, 14, & comm_inter, status, ierr ) ! !-- Send the momentum flux (u) at bottom surface to the ocean. First, !-- transfer from 1D surface type to 2D grid. CALL transfer_1D_to_2D_equal( surf_def_h(0)%usws, surf_lsm_h(0)%usws, & surf_usm_h(0)%usws ) CALL MPI_SEND( surface_flux(nysg,nxlg), ngp_xy, MPI_REAL, target_id, & 15, comm_inter, ierr ) ! !-- Send the momentum flux (v) at bottom surface to the ocean. First, !-- transfer from 1D surface type to 2D grid. CALL transfer_1D_to_2D_equal( surf_def_h(0)%vsws, surf_lsm_h(0)%vsws, & surf_usm_h(0)%vsws ) CALL MPI_SEND( surface_flux(nysg,nxlg), ngp_xy, MPI_REAL, target_id, & 16, comm_inter, ierr ) ! !-- Receive u at the bottom surface from the ocean CALL MPI_RECV( u(0,nysg,nxlg), 1, type_xy, target_id, 17, & comm_inter, status, ierr ) ! !-- Receive v at the bottom surface from the ocean CALL MPI_RECV( v(0,nysg,nxlg), 1, type_xy, target_id, 18, & comm_inter, status, ierr ) ! !-- Horizontal grid size or number of processors differs between !-- ocean and atmosphere ELSE ! !-- Send heat flux at bottom surface to the ocean total_2d_a = 0.0_wp total_2d = 0.0_wp ! !-- Transfer from 1D surface type to 2D grid. CALL transfer_1D_to_2D_unequal( surf_def_h(0)%shf, surf_lsm_h(0)%shf, & surf_usm_h(0)%shf ) CALL MPI_REDUCE( total_2d, total_2d_a, ngp_a, MPI_REAL, MPI_SUM, 0, & comm2d, ierr ) CALL interpolate_to_ocean( 12 ) ! !-- Send humidity flux at bottom surface to the ocean IF ( humidity ) THEN total_2d_a = 0.0_wp total_2d = 0.0_wp ! !-- Transfer from 1D surface type to 2D grid. CALL transfer_1D_to_2D_unequal( surf_def_h(0)%qsws, & surf_lsm_h(0)%qsws, & surf_usm_h(0)%qsws ) CALL MPI_REDUCE( total_2d, total_2d_a, ngp_a, MPI_REAL, MPI_SUM, & 0, comm2d, ierr ) CALL interpolate_to_ocean( 13 ) ENDIF ! !-- Receive temperature at the bottom surface from the ocean IF ( myid == 0 ) THEN CALL MPI_RECV( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, & target_id, 14, comm_inter, status, ierr ) ENDIF CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_BCAST( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, 0, comm2d, & ierr ) pt(0,nysg:nyng,nxlg:nxrg) = total_2d_a(nysg:nyng,nxlg:nxrg) ! !-- Send momentum flux (u) at bottom surface to the ocean total_2d_a = 0.0_wp total_2d = 0.0_wp ! !-- Transfer from 1D surface type to 2D grid. CALL transfer_1D_to_2D_unequal( surf_def_h(0)%usws, surf_lsm_h(0)%usws, & surf_usm_h(0)%usws ) CALL MPI_REDUCE( total_2d, total_2d_a, ngp_a, MPI_REAL, MPI_SUM, 0, & comm2d, ierr ) CALL interpolate_to_ocean( 15 ) ! !-- Send momentum flux (v) at bottom surface to the ocean total_2d_a = 0.0_wp total_2d = 0.0_wp ! !-- Transfer from 1D surface type to 2D grid. CALL transfer_1D_to_2D_unequal( surf_def_h(0)%usws, surf_lsm_h(0)%usws, & surf_usm_h(0)%usws ) CALL MPI_REDUCE( total_2d, total_2d_a, ngp_a, MPI_REAL, MPI_SUM, 0, & comm2d, ierr ) CALL interpolate_to_ocean( 16 ) ! !-- Receive u at the bottom surface from the ocean IF ( myid == 0 ) THEN CALL MPI_RECV( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, & target_id, 17, comm_inter, status, ierr ) ENDIF CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_BCAST( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, 0, comm2d, & ierr ) u(0,nysg:nyng,nxlg:nxrg) = total_2d_a(nysg:nyng,nxlg:nxrg) ! !-- Receive v at the bottom surface from the ocean IF ( myid == 0 ) THEN CALL MPI_RECV( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, & target_id, 18, comm_inter, status, ierr ) ENDIF CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_BCAST( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, 0, comm2d, & ierr ) v(0,nysg:nyng,nxlg:nxrg) = total_2d_a(nysg:nyng,nxlg:nxrg) ENDIF ELSEIF ( coupling_mode == 'ocean_to_atmosphere' ) THEN ! !-- Horizontal grid size and number of processors is equal !-- in ocean and atmosphere IF ( coupling_topology == 0 ) THEN ! !-- Receive heat flux at the sea surface (top) from the atmosphere CALL MPI_RECV( surface_flux(nysg,nxlg), ngp_xy, MPI_REAL, target_id, 12, & comm_inter, status, ierr ) CALL transfer_2D_to_1D_equal( surf_def_h(2)%shf ) ! !-- Receive humidity flux from the atmosphere (bottom) !-- and add it to the heat flux at the sea surface (top)... IF ( humidity_remote ) THEN CALL MPI_RECV( surface_flux(nysg,nxlg), ngp_xy, MPI_REAL, & target_id, 13, comm_inter, status, ierr ) CALL transfer_2D_to_1D_equal( surf_def_h(2)%qsws ) ENDIF ! !-- Send sea surface temperature to the atmosphere model CALL MPI_SEND( pt(nzt,nysg,nxlg), 1, type_xy, target_id, 14, & comm_inter, ierr ) ! !-- Receive momentum flux (u) at the sea surface (top) from the atmosphere CALL MPI_RECV( surface_flux(nysg,nxlg), ngp_xy, MPI_REAL, target_id, 15, & comm_inter, status, ierr ) CALL transfer_2D_to_1D_equal( surf_def_h(2)%usws ) ! !-- Receive momentum flux (v) at the sea surface (top) from the atmosphere CALL MPI_RECV( surface_flux(nysg,nxlg), ngp_xy, MPI_REAL, target_id, 16, & comm_inter, status, ierr ) CALL transfer_2D_to_1D_equal( surf_def_h(2)%vsws ) ! !-- Send u to the atmosphere CALL MPI_SEND( u(nzt,nysg,nxlg), 1, type_xy, target_id, 17, & comm_inter, ierr ) ! !-- Send v to the atmosphere CALL MPI_SEND( v(nzt,nysg,nxlg), 1, type_xy, target_id, 18, & comm_inter, ierr ) ! !-- Horizontal gridsize or number of processors differs between !-- ocean and atmosphere ELSE ! !-- Receive heat flux at the sea surface (top) from the atmosphere IF ( myid == 0 ) THEN CALL MPI_RECV( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & target_id, 12, comm_inter, status, ierr ) ENDIF CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_BCAST( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, 0, comm2d, & ierr ) CALL transfer_2D_to_1D_unequal( surf_def_h(2)%shf ) ! !-- Receive humidity flux at the sea surface (top) from the atmosphere IF ( humidity_remote ) THEN IF ( myid == 0 ) THEN CALL MPI_RECV( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & target_id, 13, comm_inter, status, ierr ) ENDIF CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_BCAST( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, 0, & comm2d, ierr) CALL transfer_2D_to_1D_unequal( surf_def_h(2)%qsws ) ENDIF ! !-- Send surface temperature to atmosphere total_2d_o = 0.0_wp total_2d = 0.0_wp total_2d(nys:nyn,nxl:nxr) = pt(nzt,nys:nyn,nxl:nxr) CALL MPI_REDUCE( total_2d, total_2d_o, ngp_o, MPI_REAL, MPI_SUM, 0, & comm2d, ierr) CALL interpolate_to_atmos( 14 ) ! !-- Receive momentum flux (u) at the sea surface (top) from the atmosphere IF ( myid == 0 ) THEN CALL MPI_RECV( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & target_id, 15, comm_inter, status, ierr ) ENDIF CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_BCAST( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & 0, comm2d, ierr ) CALL transfer_2D_to_1D_unequal( surf_def_h(2)%usws ) ! !-- Receive momentum flux (v) at the sea surface (top) from the atmosphere IF ( myid == 0 ) THEN CALL MPI_RECV( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & target_id, 16, comm_inter, status, ierr ) ENDIF CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_BCAST( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, 0, comm2d, & ierr ) CALL transfer_2D_to_1D_unequal( surf_def_h(2)%vsws ) ! !-- Send u to atmosphere total_2d_o = 0.0_wp total_2d = 0.0_wp total_2d(nys:nyn,nxl:nxr) = u(nzt,nys:nyn,nxl:nxr) CALL MPI_REDUCE( total_2d, total_2d_o, ngp_o, MPI_REAL, MPI_SUM, 0, & comm2d, ierr ) CALL interpolate_to_atmos( 17 ) ! !-- Send v to atmosphere total_2d_o = 0.0_wp total_2d = 0.0_wp total_2d(nys:nyn,nxl:nxr) = v(nzt,nys:nyn,nxl:nxr) CALL MPI_REDUCE( total_2d, total_2d_o, ngp_o, MPI_REAL, MPI_SUM, 0, & comm2d, ierr ) CALL interpolate_to_atmos( 18 ) ENDIF ! !-- Conversions of fluxes received from atmosphere IF ( humidity_remote ) THEN ! !-- Here top heat flux is still the sum of atmospheric bottom heat fluxes, !-- * latent heat of vaporization in m2/s2, or 540 cal/g, or 40.65 kJ/mol !-- /(rho_atm(=1.0)*c_p) DO m = 1, surf_def_h(2)%ns i = surf_def_h(2)%i(m) j = surf_def_h(2)%j(m) surf_def_h(2)%shf(m) = surf_def_h(2)%shf(m) + & surf_def_h(2)%qsws(m) * l_v / c_p ! !-- ...and convert it to a salinity flux at the sea surface (top) !-- following Steinhorn (1991), JPO 21, pp. 1681-1683: !-- S'w' = -S * evaporation / ( rho_water * ( 1 - S ) ) surf_def_h(2)%sasws(m) = -1.0_wp * sa(nzt,j,i) * 0.001_wp * & surf_def_h(2)%qsws(m) / & ( rho_ocean(nzt,j,i) * & ( 1.0_wp - sa(nzt,j,i) * 0.001_wp ) & ) ENDDO ENDIF ! !-- Adjust the kinematic heat flux with respect to ocean density !-- (constants are the specific heat capacities for air and water), as well !-- as momentum fluxes DO m = 1, surf_def_h(2)%ns i = surf_def_h(2)%i(m) j = surf_def_h(2)%j(m) surf_def_h(2)%shf(m) = surf_def_h(2)%shf(m) / rho_ocean(nzt,j,i) * & c_p / cpw surf_def_h(2)%usws(m) = surf_def_h(2)%usws(m) / rho_ocean(nzt,j,i) surf_def_h(2)%vsws(m) = surf_def_h(2)%vsws(m) / rho_ocean(nzt,j,i) ENDDO ENDIF IF ( coupling_topology == 1 ) THEN DEALLOCATE( total_2d_o, total_2d_a ) ENDIF CALL cpu_log( log_point(39), 'surface_coupler', 'stop' ) CONTAINS ! Description: !------------------------------------------------------------------------------! !> Data transfer from 1D surface-data type to 2D dummy array for equal !> grids in atmosphere and ocean. !------------------------------------------------------------------------------! SUBROUTINE transfer_1D_to_2D_equal( def_1d, lsm_1d, usm_1d ) IMPLICIT NONE INTEGER(iwp) :: i !< running index x INTEGER(iwp) :: j !< running index y INTEGER(iwp) :: m !< running index surface type REAL(wp), DIMENSION(1:surf_def_h(0)%ns) :: def_1d !< 1D surface flux, default surfaces REAL(wp), DIMENSION(1:surf_lsm_h(0)%ns) :: lsm_1d !< 1D surface flux, natural surfaces REAL(wp), DIMENSION(1:surf_usm_h(0)%ns) :: usm_1d !< 1D surface flux, urban surfaces ! !-- Transfer surface flux at default surfaces to 2D grid DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) surface_flux(j,i) = def_1d(m) ENDDO ! !-- Transfer surface flux at natural surfaces to 2D grid IF ( land_surface ) THEN DO m = 1, SIZE(lsm_1d) i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) surface_flux(j,i) = lsm_1d(m) ENDDO ENDIF ! !-- Transfer surface flux at natural surfaces to 2D grid IF ( urban_surface ) THEN DO m = 1, SIZE(usm_1d) i = surf_usm_h(0)%i(m) j = surf_usm_h(0)%j(m) surface_flux(j,i) = usm_1d(m) ENDDO ENDIF END SUBROUTINE transfer_1D_to_2D_equal ! Description: !------------------------------------------------------------------------------! !> Data transfer from 2D array for equal grids onto 1D surface-data type !> array. !------------------------------------------------------------------------------! SUBROUTINE transfer_2D_to_1D_equal( def_1d ) IMPLICIT NONE INTEGER(iwp) :: i !< running index x INTEGER(iwp) :: j !< running index y INTEGER(iwp) :: m !< running index surface type REAL(wp), DIMENSION(1:surf_def_h(2)%ns) :: def_1d !< 1D surface flux, default surfaces ! !-- Transfer surface flux to 1D surface type, only for default surfaces DO m = 1, surf_def_h(2)%ns i = surf_def_h(2)%i(m) j = surf_def_h(2)%j(m) def_1d(m) = surface_flux(j,i) ENDDO END SUBROUTINE transfer_2D_to_1D_equal ! Description: !------------------------------------------------------------------------------! !> Data transfer from 1D surface-data type to 2D dummy array from unequal !> grids in atmosphere and ocean. !------------------------------------------------------------------------------! SUBROUTINE transfer_1D_to_2D_unequal( def_1d, lsm_1d, usm_1d ) IMPLICIT NONE INTEGER(iwp) :: i !< running index x INTEGER(iwp) :: j !< running index y INTEGER(iwp) :: m !< running index surface type REAL(wp), DIMENSION(1:surf_def_h(0)%ns) :: def_1d !< 1D surface flux, default surfaces REAL(wp), DIMENSION(1:surf_lsm_h(0)%ns) :: lsm_1d !< 1D surface flux, natural surfaces REAL(wp), DIMENSION(1:surf_usm_h(0)%ns) :: usm_1d !< 1D surface flux, urban surfaces ! !-- Transfer surface flux at default surfaces to 2D grid. Transfer no !-- ghost-grid points since total_2d is a global array. DO m = 1, SIZE(def_1d) i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) IF ( i >= nxl .AND. i <= nxr .AND. & j >= nys .AND. j <= nyn ) THEN total_2d(j,i) = def_1d(m) ENDIF ENDDO ! !-- Transfer surface flux at natural surfaces to 2D grid IF ( land_surface ) THEN DO m = 1, SIZE(lsm_1d) i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) IF ( i >= nxl .AND. i <= nxr .AND. & j >= nys .AND. j <= nyn ) THEN total_2d(j,i) = lsm_1d(m) ENDIF ENDDO ENDIF ! !-- Transfer surface flux at natural surfaces to 2D grid IF ( urban_surface ) THEN DO m = 1, SIZE(usm_1d) i = surf_usm_h(0)%i(m) j = surf_usm_h(0)%j(m) IF ( i >= nxl .AND. i <= nxr .AND. & j >= nys .AND. j <= nyn ) THEN total_2d(j,i) = usm_1d(m) ENDIF ENDDO ENDIF END SUBROUTINE transfer_1D_to_2D_unequal ! Description: !------------------------------------------------------------------------------! !> Data transfer from 2D dummy array from unequal grids to 1D surface-data !> type. !------------------------------------------------------------------------------! SUBROUTINE transfer_2D_to_1D_unequal( def_1d ) IMPLICIT NONE INTEGER(iwp) :: i !< running index x INTEGER(iwp) :: j !< running index y INTEGER(iwp) :: m !< running index surface type REAL(wp), DIMENSION(1:surf_def_h(2)%ns) :: def_1d !< 1D surface flux, default surfaces ! !-- Transfer 2D surface flux to default surfaces data type. Transfer no !-- ghost-grid points since total_2d is a global array. DO m = 1, SIZE(def_1d) i = surf_def_h(2)%i(m) j = surf_def_h(2)%j(m) IF ( i >= nxl .AND. i <= nxr .AND. & j >= nys .AND. j <= nyn ) THEN def_1d(m) = total_2d_o(j,i) ENDIF ENDDO END SUBROUTINE transfer_2D_to_1D_unequal #endif END SUBROUTINE surface_coupler !------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing subroutine description. !------------------------------------------------------------------------------! #if defined( __parallel ) SUBROUTINE interpolate_to_atmos( tag ) USE arrays_3d, & ONLY: total_2d_a, total_2d_o USE indices, & ONLY: nbgp, nx, nx_a, nx_o, ny, ny_a, ny_o USE kinds USE pegrid IMPLICIT NONE INTEGER(iwp) :: dnx !< INTEGER(iwp) :: dnx2 !< INTEGER(iwp) :: dny !< INTEGER(iwp) :: dny2 !< INTEGER(iwp) :: i !< INTEGER(iwp) :: ii !< INTEGER(iwp) :: j !< INTEGER(iwp) :: jj !< INTEGER(iwp), intent(in) :: tag !< CALL MPI_BARRIER( comm2d, ierr ) IF ( myid == 0 ) THEN ! !-- Cyclic boundary conditions for the total 2D-grid total_2d_o(-nbgp:-1,:) = total_2d_o(ny+1-nbgp:ny,:) total_2d_o(:,-nbgp:-1) = total_2d_o(:,nx+1-nbgp:nx) total_2d_o(ny+1:ny+nbgp,:) = total_2d_o(0:nbgp-1,:) total_2d_o(:,nx+1:nx+nbgp) = total_2d_o(:,0:nbgp-1) ! !-- Number of gridpoints of the fine grid within one mesh of the coarse grid dnx = (nx_o+1) / (nx_a+1) dny = (ny_o+1) / (ny_a+1) ! !-- Distance for interpolation around coarse grid points within the fine !-- grid (note: 2*dnx2 must not be equal with dnx) dnx2 = 2 * ( dnx / 2 ) dny2 = 2 * ( dny / 2 ) total_2d_a = 0.0_wp ! !-- Interpolation from ocean-grid-layer to atmosphere-grid-layer DO j = 0, ny_a DO i = 0, nx_a DO jj = 0, dny2 DO ii = 0, dnx2 total_2d_a(j,i) = total_2d_a(j,i) & + total_2d_o(j*dny+jj,i*dnx+ii) ENDDO ENDDO total_2d_a(j,i) = total_2d_a(j,i) / ( ( dnx2 + 1 ) * ( dny2 + 1 ) ) ENDDO ENDDO ! !-- Cyclic boundary conditions for atmosphere grid total_2d_a(-nbgp:-1,:) = total_2d_a(ny_a+1-nbgp:ny_a,:) total_2d_a(:,-nbgp:-1) = total_2d_a(:,nx_a+1-nbgp:nx_a) total_2d_a(ny_a+1:ny_a+nbgp,:) = total_2d_a(0:nbgp-1,:) total_2d_a(:,nx_a+1:nx_a+nbgp) = total_2d_a(:,0:nbgp-1) ! !-- Transfer of the atmosphere-grid-layer to the atmosphere CALL MPI_SEND( total_2d_a(-nbgp,-nbgp), ngp_a, MPI_REAL, target_id, & tag, comm_inter, ierr ) ENDIF CALL MPI_BARRIER( comm2d, ierr ) END SUBROUTINE interpolate_to_atmos #endif !------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing subroutine description. !------------------------------------------------------------------------------! #if defined( __parallel ) SUBROUTINE interpolate_to_ocean( tag ) USE arrays_3d, & ONLY: total_2d_a, total_2d_o USE indices, & ONLY: nbgp, nx, nx_a, nx_o, ny, ny_a, ny_o USE kinds USE pegrid IMPLICIT NONE INTEGER(iwp) :: dnx !< INTEGER(iwp) :: dny !< INTEGER(iwp) :: i !< INTEGER(iwp) :: ii !< INTEGER(iwp) :: j !< INTEGER(iwp) :: jj !< INTEGER(iwp), intent(in) :: tag !< REAL(wp) :: fl !< REAL(wp) :: fr !< REAL(wp) :: myl !< REAL(wp) :: myr !< CALL MPI_BARRIER( comm2d, ierr ) IF ( myid == 0 ) THEN ! !-- Number of gridpoints of the fine grid within one mesh of the coarse grid dnx = ( nx_o + 1 ) / ( nx_a + 1 ) dny = ( ny_o + 1 ) / ( ny_a + 1 ) ! !-- Cyclic boundary conditions for atmosphere grid total_2d_a(-nbgp:-1,:) = total_2d_a(ny+1-nbgp:ny,:) total_2d_a(:,-nbgp:-1) = total_2d_a(:,nx+1-nbgp:nx) total_2d_a(ny+1:ny+nbgp,:) = total_2d_a(0:nbgp-1,:) total_2d_a(:,nx+1:nx+nbgp) = total_2d_a(:,0:nbgp-1) ! !-- Bilinear Interpolation from atmosphere grid-layer to ocean grid-layer DO j = 0, ny DO i = 0, nx myl = ( total_2d_a(j+1,i) - total_2d_a(j,i) ) / dny myr = ( total_2d_a(j+1,i+1) - total_2d_a(j,i+1) ) / dny DO jj = 0, dny-1 fl = myl*jj + total_2d_a(j,i) fr = myr*jj + total_2d_a(j,i+1) DO ii = 0, dnx-1 total_2d_o(j*dny+jj,i*dnx+ii) = ( fr - fl ) / dnx * ii + fl ENDDO ENDDO ENDDO ENDDO ! !-- Cyclic boundary conditions for ocean grid total_2d_o(-nbgp:-1,:) = total_2d_o(ny_o+1-nbgp:ny_o,:) total_2d_o(:,-nbgp:-1) = total_2d_o(:,nx_o+1-nbgp:nx_o) total_2d_o(ny_o+1:ny_o+nbgp,:) = total_2d_o(0:nbgp-1,:) total_2d_o(:,nx_o+1:nx_o+nbgp) = total_2d_o(:,0:nbgp-1) CALL MPI_SEND( total_2d_o(-nbgp,-nbgp), ngp_o, MPI_REAL, & target_id, tag, comm_inter, ierr ) ENDIF CALL MPI_BARRIER( comm2d, ierr ) END SUBROUTINE interpolate_to_ocean #endif