!> @file calc_radiation.f90 !------------------------------------------------------------------------------! ! This file is part of PALM. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2017 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: calc_radiation.f90 2233 2017-05-30 18:08:54Z basit $ ! ! 2232 2017-05-30 17:47:52Z suehring ! Adjustments to new topography concept ! ! 2000 2016-08-20 18:09:15Z knoop ! Forced header and separation lines into 80 columns ! ! 1873 2016-04-18 14:50:06Z maronga ! Module renamed (removed _mod) ! ! ! 1850 2016-04-08 13:29:27Z maronga ! Module renamed ! ! ! 1682 2015-10-07 23:56:08Z knoop ! Code annotations made doxygen readable ! ! 1353 2014-04-08 15:21:23Z heinze ! REAL constants provided with KIND-attribute ! ! 1322 2014-03-20 16:38:49Z raasch ! exponent 4.0 changed to integer ! ! 1320 2014-03-20 08:40:49Z raasch ! ONLY-attribute added to USE-statements, ! kind-parameters added to all INTEGER and REAL declaration statements, ! kinds are defined in new module kinds, ! revision history before 2012 removed, ! comment fields (!:) to be used for variable explanations added to ! all variable declaration statements ! ! 1036 2012-10-22 13:43:42Z raasch ! code put under GPL (PALM 3.9) ! ! Revision 1.1 2000/04/13 14:42:45 schroeter ! Initial revision ! ! ! Description: ! ------------- !> Calculation of the vertical divergences of the long-wave radiation-fluxes !> based on the parameterization of the cloud effective emissivity !------------------------------------------------------------------------------! MODULE calc_radiation_mod USE kinds PRIVATE PUBLIC calc_radiation LOGICAL, SAVE :: first_call = .TRUE. !< REAL(wp), SAVE :: sigma = 5.67E-08_wp !< REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: lwp_ground !< REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: lwp_top !< REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: blackbody_emission !< INTERFACE calc_radiation MODULE PROCEDURE calc_radiation MODULE PROCEDURE calc_radiation_ij END INTERFACE calc_radiation CONTAINS !------------------------------------------------------------------------------! ! Description: ! ------------ !> Call for all grid points !------------------------------------------------------------------------------! SUBROUTINE calc_radiation USE arrays_3d, & ONLY: dzw, pt, ql, tend USE cloud_parameters, & ONLY: cp, l_d_cp, pt_d_t, t_d_pt USE control_parameters, & ONLY: rho_surface USE indices, & ONLY: nxl, nxr, nyn, nys, nzb, nzt, wall_flags_0 USE kinds USE pegrid IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< INTEGER(iwp) :: k_help !< REAL(wp) :: df_p !< REAL(wp) :: df_m !< REAL(wp) :: effective_emission_up_m !< REAL(wp) :: effective_emission_up_p !< REAL(wp) :: effective_emission_down_m !< REAL(wp) :: effective_emission_down_p !< REAL(wp) :: f_up_m !< REAL(wp) :: f_up_p !< REAL(wp) :: f_down_m !< REAL(wp) :: f_down_p !< REAL(wp) :: impinging_flux_at_top !< REAL(wp) :: temperature !< ! !-- On first call, allocate temporary arrays IF ( first_call ) THEN ALLOCATE( blackbody_emission(nzb:nzt+1), lwp_ground(nzb:nzt+1), & lwp_top(nzb:nzt+1) ) first_call = .FALSE. ENDIF DO i = nxl, nxr DO j = nys, nyn ! !-- Compute the liquid water path (LWP) and blackbody_emission !-- at all vertical levels lwp_ground(nzb) = 0.0_wp lwp_top(nzt+1) = rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) temperature = pt(nzb,j,i) * t_d_pt(nzb) + l_d_cp * ql(nzb,j,i) blackbody_emission(nzb) = sigma * temperature**4 DO k = nzb+1, nzt k_help = ( nzt+nzb+1 ) - k lwp_ground(k) = lwp_ground(k-1) + rho_surface * ql(k,j,i) * & dzw(k) lwp_top(k_help) = lwp_top(k_help+1) + & rho_surface * ql(k_help,j,i) * dzw(k_help) temperature = pt(k,j,i) * t_d_pt(k) + l_d_cp * ql(k,j,i) blackbody_emission(k) = sigma * temperature**4 & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDDO lwp_ground(nzt+1) = lwp_ground(nzt) + & rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) lwp_top(nzb) = lwp_top(nzb+1) temperature = pt(nzt+1,j,i) * t_d_pt(nzt+1) + l_d_cp * & ql(nzt+1,j,i) blackbody_emission(nzt+1) = sigma * temperature**4 ! !-- See Chlond '92, this is just a first guess impinging_flux_at_top = blackbody_emission(nzb) - 100.0_wp DO k = nzb+1, nzt ! !-- Save some computational time, but this may cause load !-- imbalances if ql is not distributed uniformly IF ( ql(k,j,i) /= 0.0_wp ) THEN ! !-- Compute effective emissivities effective_emission_up_p = 1.0_wp - & EXP( -130.0_wp * lwp_ground(k+1) ) effective_emission_up_m = 1.0_wp - & EXP( -130.0_wp * lwp_ground(k-1) ) effective_emission_down_p = 1.0_wp - & EXP( -158.0_wp * lwp_top(k+1) ) effective_emission_down_m = 1.0_wp - & EXP( -158.0_wp * lwp_top(k-1) ) ! !-- Compute vertical long wave radiation fluxes f_up_p = blackbody_emission(nzb) + & effective_emission_up_p * & ( blackbody_emission(k) - blackbody_emission(nzb) ) f_up_m = blackbody_emission(nzb) + & effective_emission_up_m * & ( blackbody_emission(k-1) - blackbody_emission(nzb) ) f_down_p = impinging_flux_at_top + & effective_emission_down_p * & ( blackbody_emission(k) - impinging_flux_at_top ) f_down_m = impinging_flux_at_top + & effective_emission_down_m * & ( blackbody_emission(k-1) - impinging_flux_at_top ) ! !-- Divergence of vertical long wave radiation fluxes df_p = f_up_p - f_down_p df_m = f_up_m - f_down_m ! !-- Compute tendency term tend(k,j,i) = tend(k,j,i) - & ( pt_d_t(k) / ( rho_surface * cp ) * & ( df_p - df_m ) / dzw(k) ) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDIF ENDDO ENDDO ENDDO END SUBROUTINE calc_radiation !------------------------------------------------------------------------------! ! Description: ! ------------ !> Call for grid point i,j !------------------------------------------------------------------------------! SUBROUTINE calc_radiation_ij( i, j ) USE arrays_3d, & ONLY: dzw, pt, ql, tend USE cloud_parameters, & ONLY: cp, l_d_cp, pt_d_t, t_d_pt USE control_parameters, & ONLY: rho_surface USE indices, & ONLY: nzb, nzt, wall_flags_0 USE kinds USE pegrid IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< INTEGER(iwp) :: k_help !< REAL(wp) :: df_p !< REAL(wp) :: df_m !< REAL(wp) :: effective_emission_up_m !< REAL(wp) :: effective_emission_up_p !< REAL(wp) :: effective_emission_down_m !< REAL(wp) :: effective_emission_down_p !< REAL(wp) :: f_up_m !< REAL(wp) :: f_up_p !< REAL(wp) :: f_down_m !< REAL(wp) :: f_down_p !< REAL(wp) :: impinging_flux_at_top !< REAL(wp) :: temperature !< ! !-- On first call, allocate temporary arrays IF ( first_call ) THEN ALLOCATE( blackbody_emission(nzb:nzt+1), lwp_ground(nzb:nzt+1), & lwp_top(nzb:nzt+1) ) first_call = .FALSE. ENDIF ! !-- Compute the liquid water path (LWP) and blackbody_emission !-- at all vertical levels lwp_ground(nzb) = 0.0_wp lwp_top(nzt+1) = rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) temperature = pt(nzb,j,i) * t_d_pt(nzb) + l_d_cp * ql(nzb,j,i) blackbody_emission(nzb) = sigma * temperature**4 DO k = nzb+1, nzt k_help = ( nzt+nzb+1 ) - k lwp_ground(k) = lwp_ground(k-1) + rho_surface * ql(k,j,i) * dzw(k) lwp_top(k_help) = lwp_top(k_help+1) + & rho_surface * ql(k_help,j,i) * dzw(k_help) temperature = pt(k,j,i) * t_d_pt(k) + l_d_cp * ql(k,j,i) blackbody_emission(k) = sigma * temperature**4 & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDDO lwp_ground(nzt+1) = lwp_ground(nzt) + & rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) lwp_top(nzb) = lwp_top(nzb+1) temperature = pt(nzt+1,j,i) * t_d_pt(nzt+1) + l_d_cp * & ql(nzt+1,j,i) blackbody_emission(nzt+1) = sigma * temperature**4 ! !-- See Chlond '92, this is just a first guess impinging_flux_at_top = blackbody_emission(nzb) - 100.0_wp DO k = nzb+1, nzt ! !-- Store some computational time, !-- this may cause load imbalances if ql is not distributed uniformly IF ( ql(k,j,i) /= 0.0_wp ) THEN ! !-- Compute effective emissivities effective_emission_up_p = 1.0_wp - & EXP( -130.0_wp * lwp_ground(k+1) ) effective_emission_up_m = 1.0_wp - & EXP( -130.0_wp * lwp_ground(k-1) ) effective_emission_down_p = 1.0_wp - & EXP( -158.0_wp * lwp_top(k+1) ) effective_emission_down_m = 1.0_wp - & EXP( -158.0_wp * lwp_top(k-1) ) ! !-- Compute vertical long wave radiation fluxes f_up_p = blackbody_emission(nzb) + effective_emission_up_p * & ( blackbody_emission(k) - blackbody_emission(nzb) ) f_up_m = blackbody_emission(nzb) + effective_emission_up_m * & ( blackbody_emission(k-1) - blackbody_emission(nzb) ) f_down_p = impinging_flux_at_top + effective_emission_down_p * & ( blackbody_emission(k) - impinging_flux_at_top ) f_down_m = impinging_flux_at_top + effective_emission_down_m * & ( blackbody_emission(k-1) - impinging_flux_at_top ) ! !- Divergence of vertical long wave radiation fluxes df_p = f_up_p - f_down_p df_m = f_up_m - f_down_m ! !-- Compute tendency term tend(k,j,i) = tend(k,j,i) - ( pt_d_t(k) / ( rho_surface * cp ) * & ( df_p - df_m ) / dzw(k) ) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDIF ENDDO END SUBROUTINE calc_radiation_ij END MODULE calc_radiation_mod